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One of the most well-characterized symptoms of lead poisoning is porphyria.The

 
biochemical signs of lead intoxication related to porphyria areδ-aminolevulinic

 
aciduria,coproporphyrinuria,and accumulation of free and zinc protoporphyrin in

 
erythrocytes.From the 1970s to the early 80s,almost all of the enzymes in the

 
heme pathway had been purified and characterized,and it was demonstrated that
δ-aminolevulinic aciduria is due to inhibition ofδ-aminolevulinate dehydratase by

 
lead.Lead also inhibits purified ferrochelatase;however,the magnitude of inhibi-
tion was essentially nil even under pathological conditions.Further study proved

 
the disturbance of iron-reducing activity by moderate lead exposure.Far differ-
ent from these two enzymes,lead failed to inhibit purified coproporphyrinogen

 
oxidase,i.e.,the mechanism of c

 

s

 

fect
 

c

 

rphyrinuria has not yet been understood.
During the 80s to the 90s,the effects of environmental hazards including lead were

 
elucidated through stress proteins,indicating the induction of some heme pathway

 
enzymes as stress proteins.At that time,gene environment interaction was

 
another focus of toxicology,since gene carriers of porphyrias are considered to be

 
a high-risk group to chemical pollutants.Toxicological studies from the 70s to

 
the 90s focused on the direct effect of hazards on biological molecules,such as the

 
heme pathway enzymes,and many environmental pollutants were proved to af

 

s regu

 

ytosolic heme.Recently,we demonstrated the mechanism of the heme-
controlled transcription system,which suggests that the indirect effects of environ-
mental hazards are also important for elucidating toxicity,i.e.,the hazards can

 
affect cell functions through such biological mediators a

 
tion s

 
latory heme.It is,

therefore,probable that toxicology in the future will focus on biological systems
 

such as gene regulation and signal transduc
 
e;δ-a

 
ystems.――――heme metabo-
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Lead intoxication and porphyria
 

It is well known that lead is one of the most
 

famous inducers of chemical porphyria
(National Academy of Sciences 1972).As typi-
cal signs of lead poisoning,δ-aminolevulinic

 
aciduria,coproporphyrinuria,and accumulation

 
of free-and zinc-protoporphyrin in erythrocytes

 
were well described in the 1950s.According to

 

these signs,the inhibition of three heme path-
way enzymes,namely,δ-aminolevulinate(ALA)
dehydratase(Koike 1959;Lichtman and Feld-
man 1963),coproporphyrinogen oxidase,and

 
ferrochelatase,was suggested (Fig.1).The

 
biochemical mechanisms of these lead poisoning

 
signs were elucidated in the 1970s,concurrent

 
with the purification and characterization

 
studies of these enzymes(Tsukamoto et al.1979;
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Fig.1.Effect of lead on heme metabolism.
ALA dehydratase is a zinc-dependent enzyme,and the addition of lead in vitro competitively

 
decreases zinc molecules in the enzyme.According to the loss of zinc in ALA dehydratase due

 
to exchange with lead,the enzyme activity is inhibited in a dose-dependent manner(Tsukamoto

 
et al.1979).
Fifty percent inhibition of ferrochelatase and iron reducing activities in vitro was observed in

 
the presence of 100 mM and 10 mM lead,respectively(Taketani and Tokunaga 1981;Taketani

 
et al.1985).Although immunoprecipitation abolished not only Fe chelating activity but also Zn

 
chelating activity of ferrochelatase,a higher level of lead inhibited only Fe chelating activity of

 
the enzyme.It is,therefore,probable that inhibition of ferrochelatase activity is absent in lead

 
poisoning,resulting in the increase in Zn protoporphyrin in erythrocytes due to the decrease in

 
Fe supply.
(1)Induction of ALA dehydratase was described by Inoue(1959)and Maxwell and Meyer

(1976).
(2)Induction of heme oxygenase was reported by Maines and Kappas(1976).



Yoshinaga and Sano 1980;Taketani and
 

Tokunaga 1981).It should be noted that
 

Japanese toxicologists pioneered these en-
zymatic studies on heme biosynthesis.
The biochemical mechanism of ALA dehy-

dratase inhibition by lead was elucidated by
 

Tsukamoto et al.(1979).Lead binds to the
 

essential SH residues of purified hepatic ALA
 

dehydratase,resulting in the loss of binding
 

affinity to the substrate,δ-aminolevulinic acid
(ALA).Since Millar et al.(1970)reported that

 
inhibition of ALA dehydratase in liver was 60%
of that in erythrocytes,the existence of tissue-
specific isozyme has been suggested.The sug-
gestion was,however,negated by enzymatical

 
and immunochemical studies(Fujita et al.1985,
1986),and tissue differences in ALA dehydratase

 
inhibition were explained by differences in the

 
relative concentrations among ALA dehy-
dratase,lead,zinc and thiol in these tissues
(Fujita et al.1985).Lead also inhibits ferro-
chelatase activity in vitro;however,the magni-
tude of inhibition in vitro is less than that in

 
vivo(Taketani and Tokunaga 1981).Taketani

 
et al.(1985)demonstrated that the inhibition of

 
ferrochelatase by lead in vivo is attributable to

 
the decrease in iron-reducing activity.Ferro-
chelatase has zinc-chelating activity(Taketani

 
and Tokunaga 1981)and ferrochelatase activity

 
is not inhibited by moderate lead exposure,
therefore,decreased supply of ferrous ion result-
ed in an increase in zinc protoporphyrin.Thus,
the mechanisms ofδ-aminolevulinic aciduria

 
and accumulation of free-and zinc-protopor-
phyrin in erythrocytes are biochemically

 
elucidated.In contrast,Yoshinaga and Sano
(1979)reported no obvious inhibition of purified

 
coproporphyrinogen oxidase in vitro.In the

 
1970s,the paradigm on studies of porphyria due

 
to lead poisoning is,therefore,that on the bio-
chemistry of heme metabolism itself.

Biological response against lead
 

Studies to clarify the enzymatic basis of
 

inherited porphyrias were followed by the

 

molecular analyses of mutations(Fujita et al.
1998).At this time,studies in lead-induced

 
porphyrias should be different from those in

 
inherited porphyrias.It is generally accepted

 
that the elucidation of the reaction between a

 
chemical and an enzyme will be the end of in

 
vitro studies of chemical porphyrias.On the

 
contrary,the enzymatic elucidation is the start

 
of in vivo investigations,since humans have

 
managed to survive in spite of the chemical

 
exposure.Therefore,we thought that the en-
zymatic study of lead-induced porphyria in vitro

 
must be succeeded by the investigation of the

 
effects of lead on the enzyme synthesis in vivo
(Fujita et al.1981,1982;Fujita and Ishihara

 
1988a).
As was expected,lead increased ALA dehy-

dratase concentration as if to compensate the
 

enzyme inhibition not only in rat but also in
 

human(Fujita et al.1981,1982).When the
 

onset of enzyme increase in peripheral red blood
 

cells was compared with that in bone marrow
 

cells,the latter was five to seven days earlier
 

than the former,suggesting that the enzyme
 

induction is attributable to the up-regulation of
 

the gene by lead exposure(Fujita et al.1981).
A cell-free analysis supported the idea that lead

 
induces the de novo synthesis of ALA dehy-
dratase(Fujita and Ishihara 1988a).
Similar observations have been reported in

 
the field of stress response.For example,heme

 
oxygenase-1 gene,which encodes the key

 
enzyme for heme degradation,is activated not

 
only by its substrate,heme(Shibahara et al.
1987),but also by a series of stress,such as heat

 
shock(Shibahara et al.1987;Mitani et al.1989,
1991),acute phase(Mitani et al.1992),active

 
oxygen(Tacchini et al.1993;Maines et al.1993),
and heavy metals(Taketani et al.1989;Mitani

 
et al.1993).Thus,research in lead poisoning in

 
the 1980s to the 1990s was similar to that in

 
mechanisms in response to stress.
Why mature erythrocytes contain a large

 
amount of ALA dehydratase,in spite of the fact

 
that mature erythrocytes no longer synthesize

 

Significance of Regulatory Heme in Environmental Biology  55



 
heme for hemoglobin,has not been well under-
stood.One of the possible roles of the enzyme

 
protein in erythroid cells is as a 240 kDa lead-
binding protein(Piomelli 1993),since it has been

 
reported to contain 60 to 70% of blood lead
(Bergdahl et al.1997).This observation is in

 
good agreement with a regression curve

 
obtained between blood lead concentration
(μM)as X and concentration of inhibited ALA

 
dehydratase (subunit;μM)as Y in lead-
exposed workers;Y＝－0.0547＋1.448X－
0.3159X ,suggesting that 70% of lead binds to

 
ALA dehydratase when the blood lead level is

 
lower than 60 mg/100 ml(Fujita et al.1982;
Fujita 1999)(Fig.2).Thus,the induction of

 
ALA dehaydratase may decrease free lead to

 
protect humans from the toxicity(Fujita et al.
1994).

Gene-environment interaction
 

Another focus of toxicological research is

 

gene-environment interaction,since both genetic
 

defect and intoxication by chemicals are the
 

major etiologies of porphyrias(Sassa et al.
1987).ALA dehydratase defect porphyria
(ADP)is so rare that only six families have been

 
reported to date(Fujita et al.1994,1998;Akagi

 
et al.2000).It is well noted that ALA dehy-
dratase activity in two major organs of heme

 
biosynthesis,i.e.,liver as well as bone marrow,
is almost 100 times higher than the activity of

 
ALA synthase,the rate-limiting step.In fact,
ALA dehydratase activity in patients with ADP

 
ranges from ＜2% to 12% of that in control
(Fujita et al.1994).Thus,only the homozygous

 
defect develops signs and symptoms of the

 
porphyria(Fujita et al.1994,1999).

In contrast to the rare incidence of ADP,as
 

much as 2%of“normal”humans have less than
 

50% of the normal ALA dehydratase activity
(Thunell et al.1987).At least a part of this

 
decreased ALA dehydratase activity should be

 

Fig.2.Relationship between lead in blood and inhibited erythrocyte ALA dehydratase.
ALA concentrations were estimated in lead-exposed workers,and inhibited enzyme concentra-
tion in each specimen was calculated from the inhibition rate of the enzyme(Fujita et al.1982).
Since one molecule of ALA dehydratase consists of eight identical subunits,0.125μM of the

 
enzyme is equivalent to 1μM ALA dehydratase subunit.The regression curve suggests that

 
one molecule of lead is bound to one molecule of the enzyme subunit,when blood lead

 
concentration is lower than 1.5μM.
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attributed to the heterozygous defect of the

 
enzyme.These heterozygotes with ALA dehy-
dratase deficiency may have a higher risk when

 
exposed to environmental hazards(Fujita et al.
1994).Our study demonstrated that not only

 
lead,but also trichloroethylene(Fujita et al.
1984;Koizumi et al.1984a),bromobenzene
(Koizumi et al.1984b;Fujita and Ishihara 1988b)
and styrene decreases ALA dehydratase activity
(Fujita et al.1986,1987).Among these chemi-
cal hazards,lead and trichloroethylene inhibit

 
ALA dehydratase activity via chemical modifi-
cation of the active site(Tsukamoto et al.1979;
Fujita et al.1984).Bromobenzene and styrene,
however,inhibit the synthesis of ALA dehy-
dratase,resulting in a marked reduction of the

 
enzyme concentration(Fujita et al.1986,1987;
Fujita and Ishihara 1988b).The incidence of

 
subclinical exposures to these chemical hazards

 
is of concern not only in industrial settings but

 
also among the general population;therefore,
the detection of gene carriers of ALA dehy-
dratase defect may be important in genetic

 
counseling for exposure to toxic substances.

Environmental stress and heme metabolism
 

Studies in the preceding section indicated
 

that some of the environmental hazards inhibit
 

heme biosynthesis.Recently,a tiny island in
 

Kagawa Prefecture named Teshima became
 

famous due to the illegally scrapped industrial
 

wastes of up to 500 000 tons.In addition to the
 

chemicals described here,dioxin,cadmium,and
 

arsenite were detected in the waste. These
 

chemical hazards are known to induce heme
 

oxygenase-1,the key enzyme for heme
 

catabolism(Taketani et al.1989;Mitani et al.
1993).It is probable that the inhibition of heme

 
biosynthesis as well as the up-regulation of

 
heme degradation decreases heme concentra-
tion in cells;however,the significance of

 
reduced heme level remains not well under-
stood.
In the liver of trichloroethylene-exposed

 
rats(Fujita et al.1984)(Fig.3),the inhibition of

 

ALA dehydratase reduced cytochrome P-450
 

concentration and heme saturation of trypto-
phan pyrrolase,both of which are known to be

 
indicators of free(or regulatory)heme pool.
When we examined hepatic ALA synthase,the

 
first step of heme biosynthesis,in treated ani-
mals,a marked induction was observed in a

 
dose-dependent manner.Since a part of heme

 
is considered to control ALA synthase expres-
sion for negative feedback regulation of heme

 
biosynthesis,the observed induction of hepatic

 
ALA synthase suggests the role of free heme
(Yamamoto et al.1988;Fujita et al.1991a).
Further analysis revealed that the gene of he-
patic ALA synthase is located in 3p21.1.
An antibody against hepatic ALA synthase

 
could not recognize ALA synthase in eryth-
rocytes,suggesting that ALA synthase in eryth-
rocytes and that in hepatic cells are isozymes
(Yamamoto et al.1986).The gene of ALA

 
synthase in erythrocytes was found at Xp11.21;
therefore,the enzyme was proven to have two

 
isozymes:erythroid-specific ALA synthase and

 
nonspecific ALA synthase(Fujita et al.1991b).
In murine Friend virus-transformed erythroleu-
kemia(MEL)cells under hemin treatment,
mRNA for erythroid-specific ALA synthase is

 
markedly increased,suggesting an up-regulation

 
of the gene(Fujita et al.1991a).The induction

 
of erythroid-specific ALA synthase by heme is

 
physiologically important,since a large amount

 
of heme for hemoglobin is essential in cells

 
undergoing erythroid differentiation.
The gene encoding heme oxygenase-1,the

 
inducible isozyme of heme oxygenase,is well

 
known to be activated by heme,the substrate
(Shibahara et al.1987;Yoshida et al.1988).It

 
is also indicated that heme activated globin

 
gene(Fukuda et al.1994;Harigae et al.1998).
Thus,regulatory heme is suggested to control

 
genes related to heme and hemoglobin metabo-
lism;however,the exact mechanism for

 
activating genes has not yet been elucidated.
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Mechanism of  heme-mediated control of  genes
 

Maf recognition elements(MAREs)are
 

present in the regulatory region of various genes
 

involved in heme metabolism,such as oxidative
 

stress-responsive genes(Ishii et al.2000),globin
 

genes(Talbot and Grosveld 1991;Kotkow and
 

Orkin 1995;Igarashi et al.1998;Yoshida et al.
1999),the heme oxygenase-1 gene(Inamdar et

 
al.1996;Alam et al.1999),and the erythroid-
specific ALA synthase gene(Kramer et al.2000).
Heterodimers of Maf-related oncoprotein fami-
ly with transcription factor NF-E2 and its

 
related factors Nrf1,－2 and－3(Oyake et al.

1996;Marini et al.1997;Johnsen et al.1998;
Kobayashi et al.1999)bind to MAREs(Igarashi

 
et al.1994,1995;Kataoka et al.1995;Motoha-
shi et al.1997;Toki et al.1997).Like NF-E2

 
family proteins,transcription factors Bach1 and

 
Bach2,which are basic leucine zipper(bZip)
proteins,form heterodimers with the Maf pro-
teins to bind MAREs,functioning primarily as

 
repressors(Oyake et al.1996;Igarashi et al.
1998;Muto et al.1998;Yoshida et al.1999;
Kobayashi et al.2000).Thus,the gene regula-
tion operating through MAREs might be based

 
on the balance between activation and repres-
sion(Fig.4).

Fig.3.Effect of trichloroethylene on heme biosynthesis.
Trichloroethylene is oxidized by cytochrome P450 to form reactive intermediate(s),and affects

 
cytochrome P450 concentration through accelerated degradation.Since ALA dehydratase is

 
an SH-dependent and SH-rich(8 Cys/subunit)enzyme,the intermediate(s)reacts with essential

 
SH residues to cause irreversible inhibition.
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To examine if Bach1 is a heme-binding
 

protein,we expressed various portions of Bach1
 

as fusion proteins with glutathione S-transferase
(GST)and carried out binding assays(Ogawa et

 
al.2001).Bach1 has at least two functional

 
domains,i.e.,a BTB/POZ domain involving

 
protein interaction in the N-terminal region and

 
a DNA-binding bZip domain in the C-terminal

 
region.When a portion of Bach1 without the

 
BTB/POZ domain(amino acids 174-739)was

 
incubated with hemin,a Soret band with a peak

 
at 421 nm was observed,indicating that Bach1

 
is a heme-binding protein.Scatchard analysis

 
revealed that 1.3 mol of hemin bound to 1 mol of

 
the portion of Bach1(amino acids 174-739)with

 
a Kd of 140 nM.
Using several GST fusions of Bach1 deriva-

tives(portions of amino acids 174-739,174-415,
417-739,417-645,and 558-739),the heme-binding

 
region was explored.Although the N-terminal

 
portion(amino acids 174-415)showed no spe-
cific binding to heme,the C-terminal portion

(amino acids 417-739)showed a high affinity for
 

heme that was as high as a portion of Bach1
 

without the BTB/POZ domain(amino acids
 

174-739).Two subfragments(417-645 and 558-
739)still showed comparable heme-binding

 
activities that were almost half of that of the

 
C-terminal portion(amino acids 417-739).In

 
the C-terminal portion(amino acids 417-739),
there are four Cys and Pro dipeptide(CP)
motifs,which have been found in heme

 
regulatory motifs(HRMs)to play an important

 
role in heme binding(Creusot et al.1989;Chen

 
et al.1991;Rotenberg and Maines 1991;Lathrop

 
and Timko 1993;Steiner et al.1996;McCou-
brey et al.1997).When we examined GST

 
fusion proteins with single amino acid substitu-
tions of each CP motif by changing Cys to Ala,
no decline in heme-binding activity was obser-
ved.In contrast,replacement of three cluster-
ed CPs upstream of the bZip domain or of

 
all four CPs reduced heme binding activity to 1/3

 
or to 1/10 of the control,respectively.Thus,

Fig.4.Scheme of heme-controlled genes.
Effects of environmental stress on heme metabolism regulate genes through the DNA

 
binding activity of the Ba1/MafK heterodimer.

59 Significance of Regulatory Heme in Environmental Biology



 
heme binding of Bach1 is mainly regulated by

 
four CP motifs in the C-terminal portion(amino

 
acids 417-739).
The specific binding of heme by CP motifs

 
suggests that heme in Bach1 has certain func-
tions;therefore,the effects of heme on MARE

 
binding activity were analyzed. Addition of

 
hemin to the DNA binding reactions showed a

 
dose-dependent inhibition of binding activity by

 
Bach1-MafK heterodimer.Even 0.03μM heme

 
caused reproducible inhibition,and almost com-
plete inhibition was observed in the presence of

 
1μM heme.Cys to Ala substitution of four CP

 
motifs in Bach1 abolished heme-mediated inhibi-
tion of DNA binding.It is,therefore,suggested

 
that the four CP motifs play an essential role in

 
the regulatory function of heme via Bach1

 
binding.There are two possible mechanisms

 
for reducing DNA binding by heme:one is the

 
direct inhibition of Bach1-MafK heterodimer

 
binding to MARE,and the other is through

 
reduced heterodimer formation.The latter

 
possibility was immunochemically examined.
Addition of 1μM hemin had no effect on leucine

 
zipper-mediated formation of Bach1-MafK,sug-
gesting that heme inhibits the DNA binding

 
activity of the heterodimer.
The functional effects of the interaction

 
between heme and Bach1 in cells were

 
examined using a MARE-dependent reporter

 
plasmid.Without hemin treatment,Bach1 re-
pressed the expression of the reporter gene,
while 10μM hemin in the medium abolished the

 
repression by Bach1.When all CPs were alter-
ed to APs,Bach1 repressed the gene expression

 
even in the presence of 10μM hemin.It is,
therefore,proved that one of the mechanisms of

 
heme-controlled transcription is the regulation

 
of repression activity of Bach1 interacting with

 
CP motifs.
In cells with low heme concentration,

Bach1 represses genes with MAREs in their
 

regulatory regions.When cellular heme
 

increases,heme reduces the DNA-binding activ-
ity of Bach1,resulting in the dissociation of

 

Bach1 from the enhancers.A higher level of
 

heme,therefore,opens MAREs to competing
 

activators such as Nrf2(Alam et al.1999;Ishii
 

et al.2000)and NF-E2 p45(Igarashi et al.1998).
We have reported that NF-E2 p45-MafK heter-
odimer binding activity is markedly induced in

 
erythroid-differentiating MEL cells(Nagai et al.
1998).Since there is significant induction of

 
heme biosynthesis during erythroid differentia-
tion(Fujita et al.1991b),cellular heme level may

 
decrease DNA binding activity of Bach1 to

 
increase NF-E2-DNA complex.No increase in

 
NF-E2-DNA complex was observed in DR

 
clone,a clone of MEL cell that fails to undergo

 
differentiation due to absence of erythroid-
specific ALA synthase(Fujita et al.1991a;
Nagai et al.1998).One of the etiologies of

 
sideroblastic anemia,a heterogeneous disorder

 
of erythroid differentiation,is insufficient heme

 
biosynthesis and a part of sideroblastic anemia

 
may be related to neoplasia,i.e.,a clonal dis-
order that can progress to leukemia(Beutler

 
1995). Since we found that the function of

 
NF-E2 was under the control of the Ras-Raf-
MAP kinase signaling cascade(Nagai et al.
1998),one of the functions of the Bach1/heme

 
system seems to be as a biological modulator of

 
the signal transduction.Thus,the heme-
controlled function of Bach1 seems to be one of

 
the essential factors in transcription as well as

 
in signaling for normal cell differentiation.
Many of the environmental hazards de-

scribed herein affect cellular heme concentra-
tion either by inhibition of heme biosynthesis or

 
by induction of heme degradation.It is pos-
sible that the affected cellular heme,a biological

 
modulator,by some environmental pollutants

 
disturbs normal cellular functions,including

 
differentiation,as described above.Further

 
studies are necessary to examine this possibility.
Nevertheless,our observations demonstrated

 
that the indirect effects,such as via the heme/
Bach1/NF-E2 system,of chemical hazards must

 
be elucidated in the near future in the field in

 
toxicology.
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