Severe Acute Otitis Media Caused by Mucoid *Streptococcus Pyogenes* in a Previously Healthy Adult

Risako Kakuta,1,2 Hisakazu Yano,2 Hiroshi Hidaka,1 Hiromitsu Miyazaki,1 Mihoko Irimada,3 Kiyoshi Oda,3 Kazuaki Arai,4 Daiki Ozawa,1,2 Takashi Takahashi,4,5 Mitsuo Kaku2 and Yukio Katori1

1Department of Otolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
2Department of Infection Control and Laboratory Diagnostics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
3Department of Otolaryngology, Tohoku Rosai Hospital, Sendai, Miyagi, Japan
4Laboratory of Infectious Diseases, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
5Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan

Streptococcus (*S.*) *pyogenes* is well recognized as the most common pathogen causing pharyngotonsillitis in school-age children. In Japan, mucoid *Streptococcus pneumoniae* is well known as a causative agent of severe acute otitis media (AOM); however, mucoid *S. pyogenes* has rarely been reported. To the best of our knowledge, this is the first report of an AOM patient caused by mucoid *S. pyogenes* in Japan. A 36-year-old previously healthy female was referred to our hospital with suspicion of cerebrospinal otorrhea due to increasing otalgia accompanied by headache following myringotomy. Bacterial cultures of middle ear secretions were performed, and mucoid-form colonies surrounded by zones of complete β-hemolysis were produced on sheep’s blood agar. Antigen-agglutination test results were positive for *S. pyogenes*, and thus the patient received treatment with panipenem-betamipron 2.0 g/day for 10 days, which resolved nearly all symptoms. The bacteriological features of this strain were then investigated. The M-protein genotype encoded by the *emm* gene, the major virulence factor of *S. pyogenes*, was determined to be *emm*75. Generally, *S. pyogenes* forms colonies having non-mucoid matt appearances based on β-hemolysis of sheep’s blood agar. The mucoid phenotype results from abundant production of hyaluronic acid capsular polysaccharide, a key virulence determinant. *emm*75 is common in noninvasive, but less common in invasive disease. In conclusion, mucoid *S. pyogenes* can cause severe infection even in previously healthy persons. Emergence of mucoid *S. pyogenes* and drug resistance trends should be monitored in the future.

Keywords: *emm*; macrolide resistance; mucoid; otitis media; *Streptococcus pyogenes*
pyogenes infection are not fully understood. There has never been a report of mucoid β-hemolytic S. pyogenes causing AOM. Here, we report first case of severe AOM caused by mucoid S. pyogenes in a previously healthy adult.

Clinical Course and Isolate Characterization

In March 2012, a 36-year-old previously healthy woman presented to the Ear, Nose and Throat (ENT) clinic of another institution. She complained of a sore throat and right otalgia. AOM was diagnosed and right myringotomy was performed. Because of continuous serous discharge, she was referred to the ENT department of a general hospital. She had severe otalgia accompanied by headache, and was referred to the ENT department of Tohoku University Hospital with suspected cerebrospinal fluid otorrhea on the same day. The patient was fully conscious and there was no neck rigidity. Physical examination was unremarkable. Vital signs were normal, except that her temperature was 37.2°C. Otoscopy revealed pulsating serous discharge from the right ear and circumferential bulging of the wall of the right external auditory canal, with little of the tympanic membrane being visible (Fig. 1A). The left ear was normal. She complained of severe pain even if her ear was touched softly. She had no previous history of ear discharge or significant illness, but her daughter had developed pharyngitis a few days before. Pure tone audiometry demonstrated conductive hearing loss on the right side (pure tone average: 36.3 dB) and normal hearing on the left. Laboratory tests revealed a white blood cell count of 18,200/μL with 93% neutrophils and elevation C reactive protein to 7.0 mg/dL. Serum electrolytes, renal function tests, and liver function tests were normal. Computed tomography of the temporal bone demonstrated opacification of the right tympanic cavity and mastoid air cells without bony destruction. A qualitative sugar test (Lifesticks®; Siemens Japan K.K., Tokyo, Japan) of middle ear secretions was negative. Therefore, we thought it was more likely that she had severe AOM rather than cerebrospinal fluid otorrhea or meningitis. Sampling of middle ear secretions for bacterial culture was performed before treatment was started. A smear of the middle ear secretions showed Gram-positive cocci and chains. Antimicrobial therapy was commenced with intravenous meropenem (1.0 g/day). Culture of middle ear secretions on sheep blood agar plates (Nissui Pharmaceutical Co., Tokyo, Japan) grew mucoid colonies surrounded by a zone of complete β-hemolysis (Fig. 2). The antigen-agglutination test was negative for Streptococcus pneumoniae (Slidex pneumo-Kit®; Sysmex-bioMérieux Japan, Tokyo, Japan), but was positive for S. pyogenes (Seroiden Strepto Kit Eiken®; Eiken Chemical Co., Tokyo, Japan). Accordingly, it was considered that mucoid S. pyogenes could be the causative pathogen, so the patient’s antimicrobial therapy was subsequently changed to panipenem-betamipron (2.0 g/day). After receiving antimicrobial therapy for a total of 10 days, all symptoms resolved other than slight persistent discharge from the right ear. Although middle ear fluid was seen after closure of the tympanic membrane (Fig. 1B), there was no recurrence of severe AOM for the following 3 years.
Acute Otitis Media Caused by Mucoid Streptococcus Pyogenes

We confirmed infection due to *S. pyogenes* by 16S ribosomal RNA gene sequencing (Baker et al. 2003; Johansson et al. 2004; Woo et al. 2008). Antimicrobial susceptibility testing was performed for 11 antibiotics by the broth microdilution method as recommended by the Clinical and Laboratory Standards Institute (2009). The minimum inhibitory concentrations (MICs) of the antimicrobial agents were as follows: ≤ 0.016 μg/mL for penicillin G, ≤ 0.06 μg/mL for ampicillin, ≤ 0.12 μg/mL for amoxicillin/clavulanic acid, ≤ 0.06 μg/mL for amoxicillin/subactam, ≤ 0.03 μg/mL for ceftriaxone, ≤ 0.016 μg/mL for ceftidoren, > 8 μg/mL for erythromycin, ≤ 0.12 μg/mL for clindamycin, ≤ 0.008 μg/mL for panipenem, ≤ 0.008 μg/mL for meropenem, and ≤ 1 μg/mL for levofloxacin. Polymerase chain reaction (PCR) analysis was done for detection of the *ermA*, *ermB*, and *mef* genes mediating macrolide resistance, as described previously (Sutcliffe et al. 1996; Seppala et al. 1998), revealing *mefA* in the isolated strain. PCR for *emm* genotyping was carried out according to the method described previously (Beall et al. 1996; Arai et al. 2011), and the M-protein genotype was determined to be *emm*75 by comparison with the Centers for Disease Control and Prevention (CDC) *emm* database (http://www.cdc.gov/ncidod/biotech/strep/strepindex.htm). Multilocus sequence typing (MLST) analysis (Enright et al. 2001) revealed that this isolate belonged to ST49 by comparison with the MLST database (http://spyogenes.mlst.net/).

Discussion

In Japan, mucoid *S. pyogenes* has rarely been reported and has never been a report of mucoid β-hemolytic *S. pyogenes* causing AOM. However, mucoid *S. pyogenes* has occasionally been reported to cause invasive disease in other countries (Tamayo et al. 2010; Wozniak et al. 2012). The mucoid phenotype is due to abundant production of the hyaluronic acid capsular polysaccharide, a key virulence factor associated with severe *S. pyogenes* infection (Grylllos et al. 2008). Tamayo et al. (2010) described the clinical and molecular characteristics of mucoid strains causing outbreaks of infection, and compared them with non-mucoid *S. pyogenes* isolated during the same period. They found that invasive disease was more often due to mucoid isolates than non-mucoid isolates at their hospital (3% vs. 0.21%, *P* = 0.001). In our patient, it is considered that severe AOM occurred because of infection with mucoid *S. pyogenes*.

The M protein encoded by the *emm* gene is a major virulence factor of *S. pyogenes* and marked variability of *emm* gene sequences among *S. pyogenes* strains is an important surveillance tool, with more than 200 *emm* types currently listed in the online CDC database (http://www.cdc.gov/ncidod/biotech/strep/strepindex.htm). In the present patient with severe AOM, *S. pyogenes* was isolated from middle ear secretions, which had a mucoid shape and was characterized as *emm*75. According to the CDC (http://www.cdc.gov/ncidod/biotech/strep/emmtype_proportions.htm), *emm*75 is the eighth most frequently isolated *emm* type causing disease in Asian countries, being the third most frequent *emm* type isolated in patients with pharyngeal disease and less common in invasive disease. Thus, *S. pyogenes* possessing *emm*75 is commonly noninvasive, but our case suggests that severe symptoms may be caused by its mucoid form.

Macrolide resistance has gradually increased in *S. pyogenes* isolates around the world, including Japan (Wajima et al. 2008; Arai et al. 2011). Resistance of *S. pyogenes* to macrolides is mainly caused by two mechanisms: one involving 23S ribosomal RNA methylase genes (*ermB* and *ermA*) and the other involving the efflux determinant *mefa* (Sutcliffe et al. 1996; Seppala et al. 1998). In Japan, macrolide-resistant strains have been reported to account for 16.2% of *S. pyogenes* isolates, with the resistance genes *ermA*, *ermB*, and *mefa* being found in 2.5%, 6.2%, and 7.5% of strains, respectively (Wajima et al. 2008). Hotomi et al. evaluated 272 strains of *S. pyogenes* isolated in Japan, and they found that strains belonging to the *emm*75 or *emm*12 types harbored macrolide resistance genes significantly more frequently than other *emm* types and that *emm*75 strains also had *mefa* (Hotomi et al. 2009). Ardanuy et al. performed molecular characterization of *S. pyogenes* isolates in Barcelona, and reported that *emm*75-ST49 (the same *emm* and ST types as the isolate in our patient) was one of the most frequent genotypes that possessed *mefa* (Ardanuy et al. 2010). To date, *S. pyogenes* remains universally susceptible to penicillin, which comprises the treatment of choice in non-allergic patients so we could have treated her with penicillin.

In conclusion, mucoid *S. pyogenes* can cause severe infection even in previously healthy persons. Emergence of mucoid *S. pyogenes* and drug resistance trends should be monitored in the future.

Conflict of Interest

The authors declare no conflict of interest.

References

Clinical and Laboratory Standards Institute (2009) Performance standards for antimicrobial susceptibility testing; 19th informational supplement, M100-S19, Clinical and Laboratory Standards Institute, Wayne, PA.

