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Differentiating neutrophils based on the count of nuclear lobulation is useful for diagnosing various 
hematological disorders, including megaloblastic anemia, myelodysplastic syndrome, and sepsis.  It has 
been reported that one-fifth of sepsis-infected patients worldwide died between 1990 and 2017.  Notably, 
fewer nuclear-lobed and stab-formed neutrophils develop in the peripheral blood during sepsis.  This 
abnormality can serve as an early diagnostic criterion.  However, testing this feature is a complex and time-
consuming task that is rife with human error.  For this reason, we apply deep learning to automatically 
differentiate neutrophil and nuclear lobulation counts and report the world’s first small-scale pilot.  Blood 
films are prepared using venous peripheral blood taken from four healthy volunteers and are stained with 
May–Grünwald Giemsa stain.  Six-hundred 360 × 363-pixel images of neutrophils having five different 
nuclear lobulations are automatically captured by Cellavision DM-96, an automatic digital microscope 
camera.  Images are input to an original architecture with five convolutional layers built on a deep learning 
neural-network platform by Sony, Neural Network Console.  The deep learning system distinguishes the 
four groups (i.e., band-formed, two-, three-, and four- and five- segmented) of neutrophils with up to 99% 
accuracy, suggesting that neutrophils can be automatically differentiated based on their count of segmented 
nuclei using deep learning.  
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Introduction
Visual observations of blood-cell morphology com-

prise basic routine tests performed at clinical laboratories, 
rendering them of the highest clinical significance for 
blood-cell diagnoses.  It is possible to distinguish among 
various pathological problems with the information 
obtained from the observations.  In our laboratory, six types 
of neutrophils, including band-formed, segmented, lympho-
cyte, monocyte, eosinophil, and basophil are identified 
using texture analyses and gray-level co-occurrence matri-
ces (Kono et al. 2018).  However, it is extremely difficult to 
distinguish between neutrophils based on the number of 
nuclear lobulations.  Nevertheless, such a method is useful 
for the diagnosis of various blood diseases, such as megalo-
blastic anemia and myelodysplastic syndrome.  Moreover, 

it is useful for identifying sepsis (Chan et al. 2010), which 
has been recognized as one of the most serious menaces to 
mankind.  It has been reported that one-fifth of the infected 
patients worldwide died of sepsis between 1990 and 2017 
(Rudd et al. 2020).  The criteria needed to diagnose sepsis 
includes a left sifting of the neutrophil (Ishimine et al. 
2013) because the count of band-formed and/or smaller 
lobulated nuclear neutrophils increases in the peripheral 
blood infected with sepsis; this is a criteria which can be 
used for early diagnosis (Bernstein and Rucinski 2011; 
Mare et al. 2015; Farkas 2020).  The automatic differentia-
tion of neutrophils based on nuclear lobulation is extremely 
helpful; however, a visual examination under a microscope 
is a complex and time-consuming process for the clinical 
staff.  To hone the skills for accurate discrimination, tre-
mendous experience and skill is required (Kikuchi et al. 
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1995).  However, the objectivity and reproducibility of such 
testing suffers due to human factors such as the fatigue and 
biases of the examiners.  To resolve these problems, studies 
on automated analysis of neutrophil images using various 
image-analysis techniques have been reported (CellaVision 
2019; Medica Corporation 2020; West Medica 2020).  
Standard machine learning image analysis techniques for 
blood cells have thus far been conducted using image seg-
mentation, feature extraction, and automatic classification 
(Puigvi et al. 2017; Rodellar et al. 2018; Merino et al. 
2018).  These processes require smart analysis design and 
significant coding efforts to handle the large calculations 
required for the implementation.  Therefore, we focused on 
deep-learning methods of machine learning which were 
modeled on human neurological systems (Chollet 2017.  
Deep learning algorithms automatically adjust parameters 
in their own network to minimize the differences between 
estimations and ground truth, and thus, to arrive at optimal 
solutions (Saito 2016; Sony Network Communications Inc. 
2017; Wakui and Wakui 2017).

Several deep learning studies on the discrimination of 
peripheral blood leucocytes have been conducted.  Shahin 
et al. (2019) reported a high accuracy for the five types of 
peripheral blood neutrophils using two convolutional neu-
ral-network (CNN) architectures; the accuracy achieved 
was 91.2% and 84.9% for each architecture.  Acevedo et al. 
(2019) reported the results of distinguishing eight classes of 
normal peripheral blood cells, including segmented and 
band-formed nuclear neutrophils, using two different CNN 
architectures and achieved an accuracy of 96% and 95%.  
Nevertheless, these two reports neither identified the num-
ber of segmented nuclear lobes nor differentiated the num-
ber of segmented neutrophils.

In this study, we developed a new technology for auto-
matically distinguishing the nuclear lobulation of neutrophil 
images using deep learning and reported the world’s first 
results of a small-size pilot study.  Moreover, we compared 
various improvement effects of training-data augmentation.

Table 1.  Number of training, testing, and augmented images.

Type of neutrophil by the nuclear lobe count

band 2-seg 3-seg 4-seg 5-seg Total

Total captured images for pre-study 600 600 600 600 600 3,000
Initial training data set for pre-study (pre-training data: Pre-TR) 500 500 500 500 500 2,500
Initial test data set for pre-study 100 100 100 100 100 500

Type of neutrophil by the nuclear lobe count

band 2-seg 3-seg 4- & 5-seg Total Image

Recaptured images after the pre-study 600 600 600 300 + 300 2,400
1st training data set (A-training data: ATR) 500 500 500 250 + 250 2,000 Fig. 1A
1st test data set (A-testing data: ATE) 100 100 100 50 + 50 400

1st data augmentation to images in ATR
Type of neutrophil by the nuclear lobe count

band 2-seg 3-seg 4- & 5-seg Total Image

B: vertically inverted images 500 500 500 500 2,000 Fig. 1B
C: horizontally inverted images 500 500 500 500 2,000 Fig. 1C
D: vertically and horizontally inverted 500 500 500 500 2,000 Fig. 1D
B training data set: BTR = ATR + B + C + D 2,000 2,000 2,000 2,000 8,000

2nd data augmentation to images in ATR
Type of neutrophil by the nuclear lobe count

band 2-seg 3-seg 4- & 5-seg Total Image

E: randomly rotated right or left within +/−90° 500 500 500 500 2,000 Fig.1E
F: distorted 500 500 500 500 2,000 Fig.1F
G: changed the aspect ratio 500 500 500 500 2,000 Fig.1G
C training data set: CTR = ATR + E + F + G 2,000 2,000 2,000 2,000 8,000

Total set of augmented images in ATR
Type of neutrophil by the nuclear lobe count

band 2-seg 3-seg 4- & 5-seg Total

D training data set:
DTR = ATR + B + C + D + E + F + G 3,500 3,500 3,500 3,500 14,000

Number of training, testing, and augmented images used in this study are listed.
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Materials and Methods
Blood fi lms from four healthy volunteers were pre-

pared using venous peripheral blood stained with May-
Grünwald Giemsa stain.  Six hundred images (360 × 363 
pixels) of neutrophils having fi ve diff erent nuclear lobula-
tions [i.e., band-formed (band), two-segmented (2-seg), 
three-segmented (3-seg), four- and fi ve-segmented (4- and 
5-seg) nuclei] were automatically captured using 
CellaVision® DM96 equipment (CellaVision Japan, Tokyo, 
Japan).  This equipment can automatically capture over 
hundreds of single neutrophil images in the center of each 
picture from a considerable number of peripheral blood 
fi lms within several hours.  The outputs of the classifi er of 
DM96 were not used to label the training or testing images 
in this study.  Instead, a rating team comprising three medi-
cal technologist students and a board hematologist classi-
fi ed the leukocyte images into the fi ve groups.

Prior to combining the 4- and 5-seg groups, 500 
images were randomly selected to compile the training data 
(Pre-TR); the remaining 100 images were used for pre-test-
ing (Pre-TE) (Table 1).  However, we found that, consid-
ered separately, the features were too sparse to draw border 
lines between 4-seg and 5-seg nuclei.  To combine them, 
we captured 300 additional images for each of the two cell 
groups.  The process that led us to arrive at this decision is 
further explained in the subsequent section.  From a total of 
2,400 images, 500 images representing the fi nal four groups 
were randomly selected to compile the A-training dataset 
(ATR).  The remaining 400 images constituted the A-testing 
dataset (ATE).  

The criterion for the determination of the neutrophil’s 
nuclear lobulations, especially, the distinction between 
band- and segmented-neutrophils was published (Takami et 
al. 2021) by the Japanese Society for Laboratory 
Hematology and Japanese Association of Medical 
Technologists; this criterion has been widely accepted as 
the standard among actual observers working at clinical 
laboratories in Japan.  Initially, we adopted this criterion to 
determine the correct label for each neutrophil’s image in 
the Pre-TR and Pre-TE (Table 1).  However, we employed 
a clearer criterion for nuclear lobulation and rearranged the 
ATR and ATE such that a lobulated nucleus would be 
defi ned as connected by a thin thread of chromatin (Palmer 
et al. 2015) to enable selection of only typical images for 
each cell type.   

Each copy of the 2,000 images in the ATR (Fig. 1A) 
was vertically inverted (Fig. 1B), horizontally inverted (Fig. 
1C), and vertically and horizontally inverted (Fig. 1D).  All 
6,000 images were subsequently added to the ATR.  The 
new total of 8,000 images served as the B-training (BTR) 
set.  Each image in the ATR was randomly rotated right or 
left by 90° (Fig. 1E) and distorted (Fig. 1F).  Subsequently, 
their aspect ratios were changed (Fig. 1G), and the 6,000 
images were added to the ATR.  The resultant 8,000 images 
served as the C-training (CTR) set.  Two sets of the aug-

mented 3,000 BTR and CTR images were then added to the 
ATR.  The new total of 14,000 images served as the 
D-training (DTR).

The correct cell type was labeled for each image in the 
ATR, BTR, CTR, and DTR sets by the rating team as the 
input for the Neural Network Console (NNC) (Version 1.00, 
Sony Network Communications Inc., Tokyo, Japan).  NNC 
is a software developed by Sony Communications Inc., 
which provides support for the creation of a neural network 
model for deep learning.  Users build a suitable architecture 
for their respective problems using the graphical user inter-
face by clicking and dragging icons with a pointing mouth 
in an easier manner as compared with that through conven-
tional Python program libraries such as TensorFlow (https://
www.tensorflow.org) or PyTorch (https://pytorch.org).  
While using conventional libraries, the system has to be 

Fig. 1.  Examples of augmentation of neutrophil images in 
training data.

 (A) Original image, (B) vertically inverted image, (C) 
horizontally inverted image, (D) vertically and horizon-
tally inverted image, (E) rotated image, (F) distorted im-
age, and (G) aspect ratio changed image.
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coded using the relevant programing language, e.g., Python.  
Furthermore, users can repeatedly attempt to make, evalu-
ate, and remake a deep learning system using appropriate 
training and test data prepared for their problem with 
Neural Network Console.  All the images were automati-
cally resized to 224 × 224 by the NNC based on the size of 
the input layer of the architecture (Krizhevsky et al. 2017) 
used in this study.  A total of 300 epochs of learning was 
achieved for each round of training.  We did not use an 
n-fold cross-validation scheme to evaluate the performance 
of the architecture because this method is not supported by 
the Neural Network Console.  After each round, we saved 
all final weights and biases as the learned architecture of the 
round of training.  After convergence, the cell type of each 
image in Pre-TE and ATE was estimated.  We intended to 
evaluate regarding which image augmentation method 
resulted in the best accuracy for the estimation; therefore, 
five rounds of training and evaluation were performed using 
each of the four training datasets that were augmented with 
different methods.  We have no logical grounds regarding 
the reason for performing five iterations of the machine 
learning algorithm.  However, conducting the learning for 
merely three rounds was insufficient to evaluate the perfor-
mance statistically.  The accuracies were compared among 
the four sets of training data.  Accuracy, precision, recall, 
and F-measure can be described using the following equa-
tions:

where, TP, TN, FP, and FN are the number of true-positive, 
true negative, false-positive, and false negative classifica-
tions, respectively.

The architecture used in this study (Fig. 2) was cus-
tomized for a machine with one graphical processing unit 
(GPU), which is the half of the originally published archi-
tecture designed for two GPUs (Krizhevsky et al. 2017) and 
consisted of input (I), convolution (C), batch normalization 
(B), rectified linear unit (R, ReLU), max-pooling (M), drop 
out (D), affine (A), sigmoid (S), and softmax cross-entropy 
(S) (Sony Network Communications Inc. 2020).  We cali-
brated the super parameters of the CNN for deep learning 
as follows: learning rate = 0.001, optimizer = Adam, stride 
for max pooling layers = 2 × 2, and batch size = 128.  The 

device used for this study was a custom DELL 
ALIENWARE AURORA (Dell Inc., Kawasaki, Japan).  
The processor was Intel®CoreTM i7-7700 with 32-GB of 
main memory, and the GPU was an NVIDIA® GeForce® 
GTX 1080 Ti (11GMGDDR5X).  The GPU was used as the 
vector processor.  This study was approved (2018-101-01) 
by the Ethics Committee of the Faculty of Health Sciences 
from Hokkaido University.

Results
Prior to combining the 4- and 5-seg lobes, a total of 

300 learning epochs were achieved five times on all five 
groups using 2,500 images from Pre-TR.  The confusion 
matrix for the five evaluations of Pre-TE is shown in Fig. 4, 
in which the total accuracy achieved was 0.576, and the 
recall of 4-seg neutrophils was extremely low at 0.198 and 
the rates of erroneous categorization of 4-seg neutrophils as 
2-, 3-, or 5-seg were 0.012, 0.216, and 0.574, respectively; 
that of the 5-seg lobes was the highest greater than twice 
the value of the correct estimation.  Therefore, we con-
cluded that the architecture adopted for this study did not 
distinguish between 4- and 5-seg neutrophils.  Hence, we 
united them into a group of a total of 600 newly captured 
images (300 each for 4-seg and 5-seg).  From all 2,400 
images of the four groups, 2,000 were that of ATR and 400 
were that of ATE.  All images in ATR were processed as 
described.  Using ATR, BTR, CTR, and DTR, 300 epochs 
of learnings were achieved for five iterations.  The cost, 
training error, and validation error decreased as shown in 
Fig. 3, indicating that convergence was achieved, and neu-
ral-network optimization was finished.  The maximum val-
ues of the accuracy evaluated by the ATE were 0.700, 
0.983, 0.978, and 0.990, respectively (Table 2).  Detailed 
confusion matrices for the evaluation of deep learning with 
the maximum accuracy shown in Table 2 are presented in 
Fig. 5A-D.  The other performance indicators for each the 
deep learning system are listed in Table 3 for learning, 
while the maximum accuracy is listed in Table 2.  The time 
required for the convergence of the ML epochs are listed by 
Table 4.  

Discussion
This study confirmed that the proposed deep learning 

system distinguished four groups of band-formed, 2-seg, 
3-seg, 4- and 5-seg neutrophils with an accuracy of up to 
99%.  From Table 4, it is evident that a larger quantities of 
training data required longer learning times.  From Fig. 4, it 
is evident that it was difficult to classify neutrophils into the 
five groups of nuclear cells using the architecture adopted 
in this study.  However, it is not always easy even for expe-
rienced examiners to distinguish four or five lobes.  After 
combining the 4- and 5-seg groups, the accuracy improved 
to 0.700 (Table 2) from an extremely low value of 0.567 
(Fig. 4).

A total accuracy of 0.700 is insufficient for clinical 
practice.  To improve this accuracy, we examined the effect 

Accuracy =
TP+TN

TP+FP+FN+TN

Precision =
TP

TP+FP

Recall =
TP

TP+FN

Fmeasure =
2×Recall×Precision

Recall+Precisio
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Fig. 2.  Multilayer neural network for the fi ve convolution layers used in this study.
 Square boxes indicate the function of the layer.  The fi gures of the right side of the box indicate the specifi cations for 

each layer.  For example, at the right side of the fi rst input layer, the three fi gures indicate the number of colors (color: 
red, green and blue), and the size (height and width) of input image, respectively.  An identical format is used in the sec-
ond convolution layer to indicate the number and the size (height and width) of feature map output, respectively.  
“ReLU” refers to rectifi ed linear unit.  “Kernel shape: 5.5” indicates the pixel size of each fi lter for convolving the input.  
Other specifi ers in this fi gure are described in reference (Sony Network Communications Inc. 2020).  We use “affi  ne” in 
this report instead of the more common term, “fully connected layer” because “affi  ne” is used in the Neural Network 
Console.

Fig. 3.  Example of learning curve in this study.
 This is an example of the learning curve output by Neural Network Console during training with D-training data.  The 

horizontal axis of the graph represents the epoch indicating the number of repeated generations (epochs) of optimiza-
tion.  The left and right vertical axes represent the cost and error, i.e., the output of the loss function at the optimization 
stage and the output of loss function of the training data and testing data at the end of each epoch.  The blue and red sol-
id lines indicate the cost and training error.  The red dotted line indicates the testing error.  
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of augmenting the training data.  Several reports on the 
improvement of accuracy based on this method have been 
conducted.  In this study, the best accuracy of the deep 
learning algorithm trained using the BTR was 0.983 (Table 

2), wherein the images were inverted left, right, up, and 
down.  Moreover, the accuracy improved to 0.978 and 0.99 
using the CTR and DTR sets (Table 2), respectively.  An 
accuracy of 99% is suffi  cient to examine the proposed 

Fig. 4.  Confusion matrix for the pre-testing data.
 Number of each column is the total count of fi ve times estimating results for pre-testing data (Pre-TE) by a neural net-

work learned with pre-training data.

Fig. 5.  Confusion matrices of the neural network learned using 4 diff erent training data.  
 Estimation results for the neural network at the round of learning with the best accuracy in Table 2.  Matrix 5A indicates 

the estimation result for the neural network at the 5th round of learning with the A-training data, Matrix 5B indicates that 
at the 4th round of learning with the B-training data, Matrix 5C indicates that at the 1st round of learning with the C-
training data, and Matrix 5D indicates that the 4th round of learning with the D-training data. 
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method using clinical specimens.  However, in this study, it 
was not possible to discriminate between 4- and 5-seg.  For 
successful discrimination, it might be effective to increase 
the number of images in the original training data.  
Moreover, the accuracy might be further improved by 
adjusting the number and size of the filter in the convolu-
tion layer, or by changing the stride and setting additional 
hyperparameters in the architecture.  Although several 
architectures have been developed, further study is required 
to find an optimal architecture suitable for discriminating 
leukocyte images.  

The following is the limitations of our study.  First, the 
study was based on a small dataset of individuals and 
images.  Second, the images of the testing data were 

selected from identical smears for the images of the training 
data; this might result in a bias in the evaluation conducted 
in this study.  Third, all the images were derived from the 
blood of normal volunteers and indicated typical morpho-
logical features for each cell type.  However, the segmenta-
tion of nuclear lobes arrears more ambiguously in clinical 
laboratory.  Thus, we should try the presented method using 
real clinical peripheral blood cell images, including patient 
samples.  

In conclusion, the proposed deep learning system dis-
tinguishes four groups (i.e., band-formed, two-, three-, and 
four- and five- segmented) of neutrophils with up to 99% 
accuracy, suggesting that neutrophils can be automatically 
differentiated based on the count of segmented nuclei using 

Table 2.  Accuracy of each round of learning conducted using testing data.

Training data
Round number 
of learning

A-training data B-training data C-training data D-training data

1st
2nd
3rd
4th
5th

0.613
0.573
0.403
0.630

*0.700

0.958
0.975
0.728

*0.983
0.743

*0.978
0.743
0.720
0.963
0.740

0.740
0.985
0.985

*0.990
0.743

The accuracies of the neural network trained using a training dataset of ATR, BTR, CTR, and DTR are indicated in each 
corresponding column.  The accuracies for each round number of learning are listed in each row.  An asterisk * marks the 
best accuracy achieved among five rounds of learning with each training dataset.

Table 3.  Indicators of performance for each architecture along with the best accuracy.

Training data
Indicators of 
performance

A-training data B-training data C-training data D-training data

Best accuracy 0.700 0.983 0.978 0.99
Average precision 0.702 0.983 0.978 0.99
Average recall 0.700 0.983 0.978 0.99
Average F-measure 0.699 0.982 0.977 0.99
Corresponding confusion matrix Fig. 5A Fig. 5B Fig. 5C Fig. 5D

All indicators in each column are calculated using values in the corresponding confusion matrix indicating the 
lowest low.  “Average precision”, “average recall” and “average F-Measure” are the average of four values of 
precision, recall, and F-Measure, respectively for all groups (i.e., band, 2-seg, 3-seg, 4- and 5-seg).

Table 4.  Time required for 300 epochs of the machine learning algorithm.

Training data
Round number 
of learning

A-training data B-training data C-training data D-training data Pre-training data

1st 0:17:05 0:40:50 0:41:17 1:13:28 0:14:27
2nd 0:10:38 0:41:09 0:41:08 1:12:02 0:14:32
3rd 0:10:30 0:41:17 0:41:20 1:12:43 0:14:19
4th 0:10:22 0:41:13 0:42:32 1:13:31 0:14:16
5th 0:10:27 0:41:12 0:41:33 1:13:52 0:14:14

“0:17:05” means 0 h, 17 min, and 5 s are needed to achieve 300 epochs of the machine learning algorithm.
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deep learning.  
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