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Acute radiation enteritis is a common complication occurring in patients with pelvic and abdominal tumors 
who receive radiotherapy.  Acute radiation enteritis seriously reduces the life quality, even threatens the 
lives of patients.  Untargeted metabolomics is an emerging strategy to explore the novel biomarkers and 
uncover potential pathogenesis of acute radiation enteritis.  Acute radiation enteritis rat model was 
established by single abdominal irradiation with a gamma-ray dose of 10 Gy.  Serum from 15 acute 
radiation enteritis rats and 10 controls was extracted for metabolomics analysis by UHPLC-Q-TOF/MS.  
Clinical manifestations and morphological alterations of intestine confirmed the successful establishment of 
acute radiation enteritis.  According to the metabolomics data, 6,044 positive peaks and 4,241 negative 
peaks were extracted from each specimen.  OPLS-DA analysis and the heat map for cluster analysis 
showed satisfactory discriminatory power between acute radiation enteritis rats and controls.  Subsequent 
analysis extracted 66 significantly differentially expressed metabolites, which might be potential biomarkers 
for acute radiation enteritis diagnosis.  Moreover, Kyoto Encyclopedia of Genes and Genomes enrichment 
analyses uncovered the potential mechanisms through which differentially expressed metabolites 
participated in acute radiation enteritis pathogenesis.  To sum up, we summarized several differentially 
expressed serum metabolites as potential biomarkers for diagnosis of acute radiation enteritis and provide 
latent clues for elucidating acute radiation enteritis pathology.
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Introduction
Radiotherapy is commonly used in comprehensive 

treatment for common malignancies (Abshire and Lang 
2018).  For radiotherapy of gastrointestinal cancer, ionizing 
radiation is often administrated to patient’s abdomen or pel-
vis (Stacey and Green 2014).  However, abdominal and pel-
vic radiation can cause several typical and complex dam-
ages in the bowel tissues, which are always known as acute 
radiation enteritis (ARE).  Without treatments, more severer 
symptoms will develop, such as intestinal fibrosis, intestinal 
stenosis or perforation, anorectal fistula and intestinal adhe-
sion (Ashburn and Kalady 2016).  In patients who received 
abdominal or pelvic radiotherapy, about 90% developed 

changes in their bowel habit, and life quality of more than 
50% patients was impacted profoundly by ARE (Khalid et 
al. 2006).  The diagnosis of ARE is suspected in patients 
with nausea, vomiting, abdominal pain, diarrhea, or lower 
gastrointestinal bleeding after completion of radiotherapy, 
and established by endoscopy and histology (Hauer-Jensen 
et al. 2007).  However, because endoscopy and histopatho-
logic examinations can cause further injury and discomfort, 
non-invasive methods are necessary to diagnose ARE.

Because ARE often disrupts metabolism and absorp-
tion function of the bowel system, serum levels of certain 
metabolites change in ARE patients compared to healthy 
people.  Therefore, identification of those differential 
metabolites will be highly promising to establish diagnostic 
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biomarkers for ARE.  Among various methods applied to 
assess the metabolites (including mass spectrometry, untar-
geted metabolomics, targeted metabolomics and imaging 
metabolomics) (Johnson et al. 2016), metabolomics 
approach is the most powerful due to its rapid, high 
throughput and sensitive characteristics (Pannkuk et al. 
2017).  So far, several studies have identified some metabo-
lomic biomarkers for radiation injury though animal models 
(Zhang et al. 2014; Jones et al. 2017; Zhao et al. 2017).  For 
example, Laiakis et al. (2012) revealed that radiation injury 
led to significant change in metabolites of tricarboxylic acid 
and fatty acids cycle in the urine.  Compared with biomark-
ers in the urine, bioindicators in the serum are more reli-
able.  Several studies demonstrated that serum profiling of 
metabolites relating to the pyrimidine and tryptophan path-
ways could be used as candidate indicators of radiation 
exposure (Ni et al. 2008; Broin et al. 2015).  However, all 
those studies were based on total-body irradiated animal 
models, and the metabolomics changes in partial radiation-
induced ARE models have not been investigated yet.  

In the current research, we established a physiologi-
cally relevant ARE rat model and analyzed the differentially 
expressed serum metabolites between ARE and normal rats.  
We identified 66 significantly differentially expressed 
metabolites.  As a result, we summarized several differen-
tially expressed serum metabolites as potential biomarkers 
for diagnosis of ARE.  In addition, we provided novel 
insights into the pathology of ARE.

Materials and Methods
Animal model

Adult male Sprague-Dawley (SD) rats (7-8 weeks) 
weighing 220-250 g were purchased from Shanghai SLAC 
Laboratory Animal Co. Ltd (Shanghai, China).  All rats 
were housed in the room maintained at constant tempera-
ture and humidity with a 12/12 h light/dark cycle according 
to the guidelines established by Nanjing Medical 
University.  All experimental procedures were approved by 
the Supervisory Committee of Nanjing Medical University 
Animal Council.  A total of 25 SD rats were randomly 
divided into two groups including 10 rats in control group 
and 15 in ARE group.  ARE rat model was established 
through single abdominal irradiation with a gamma-ray 
dose of 10 Gy at a rate of 500 cGy/min, while rats in nor-
mal group received mock radiation.  The fecal condition of 
each rat was recorded.  After the radiation, 4 mL of whole 
blood was drawn from each rat, and then the rat was eutha-
nized by excessive sodium pentobarbital injection.  
Hematoxylin and eosin (H&E) staining was applied to 
assess the alterations in intestinal structure at four days after 
radiation.  

Serum samples preparation
At 4 days after the radiation, 4 mL of whole blood was 

drawn from each rat.  The whole blood was extracted into 
anticoagulant-treated tubes.  Cells in the whole blood were 

removed by centrifugation at 4oC (15 min, 2,000 × g).  The 
supernatant was transferred to sterilized polypropylene 
tubes.  Afterwards, 100 μL of supernatant was taken and 
mixed with 400 μL of ice-cold methanol/acetonitrile (1:1,  
v/v).  The protein in the mixture precipitated out after incu-
bation at −20oC for 1 hour.  Protein precipitation was 
removed by centrifugation at 4oC (20 min, 14,000 × g).  
After the centrifugation, the supernatant was lyophilized 
and stored at −80oC.  Before UHPLC-Q-TOF/MS, the sam-
ple was dissolved in 150 μL of ice-cold mixture of metha-
nol and acetonitrile (1:1, v/v) with 10 μL of internal stan-
dard (0.3 mg/mL 2-chloro-1-phenylalanine in methanol).  
Subsequently, according to Chen et al. (2013), the mixture 
was ultrasonicated at room temperature for 5 min, followed 
by incubation at −20oC for 10 min.  After that mixture was 
centrifuged at 4oC (12,000 × g, 10 min).  A total of 100 μL 
of supernatant from each tube was collected, filtered 
through 0.22 μm microfilters, and transferred to LC vials.

UHPLC-Q-TOF/MS analysis
Metabolic profiling of serum specimens was analyzed 

with an Agilent 1290 infinity LC system coupled with an 
AB SCIEX Triple time-of-flight 5600 system.  Columns 
(Waters, ACQUITY UPLC BEH Amide 1.7 μm, 2.1 mm × 
100 mm and Waters, ACQUITY UPLC HSS T3 1.8 μm, 2.1 
× 100 mm) were employed.  Serum samples were separated 
by chromatography with the column temperature at 25oC.  
The mobile phase consisted of 25 mM ammonium acetate 
and 25 mM ammonia in water (A) and acetonitrile (B).  The 
elution gradient initially was initiated with 95% B for 1 
min, linearly decreased to 65% B at 14 min, maintained for 
2 min, and then returned to 95% B for 2 min of equilibrium.  
The delivery flow rate was 300 μL/min, and 2 μL of aliquot 
of each sample was injected into the column.  Time of flight 
(TOF)/MS was performed on both positive ion mode and 
negative ion mode.

Electrospray ionization (ESI) source conditions were 
set as follows: ion source gas 1, 60 psi; ion source gas 2, 60 
psi; curtain gas, 30 psi; source temperature, 600°C; ion-
spray voltage floating, ± 5,000 V; TOF MS scan m/z range, 
60-1,000 Da; product ion scan m/z range, 25-1,000 Da; 
TOF/MS scan accumulation time, 0.20 s/spectra; product 
ion scan accumulation time, 0.05 s/spectra.  MS/MS spectra 
were acquired with information dependent acquisition 
(IDA) in high sensitivity mode.  The parameters were set as 
follows: declustering potential, ± 60 V; collision energy, 35 
± 15 eV; exclude isotopes within 4 Da; and candidate ions 
to monitor per cycle, 6.

Metabolomics data analysis
The raw UHPLC-Q-TOF/MS data were converted to 

mzXML files and then processed online using XCMS soft-
ware.  The structures of metabolites were established by 
searching the support database with accurate mass match 
(Δm/z < 25ppm) and MS/MS spectra comparison.  The 
XCMS data were processed by Pareto-scaling with 
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SIMCA-P 14.1 software.  Principle component analysis 
(PCA) was conducted and a heat map of hierarchical clus-
tering analysis was generated for the unsupervised multi-
variate statistical analysis.  Orthogonal partial-least squares 
discrimination analysis (OPLS-DA) was conducted as a 
supervised method to identify the important variables with 
discriminative power, and OPLS-DA model was validated 
by a permutation test with 200 iterations.  The variable 
importance in the projection (VIP) value of each variable in 
the OPLS-DA model was calculated to display its contribu-
tion to the classification.  Metabolites with the VIP value > 
1 were further applied to Student’s t-test at univariate level 
to measure the significance of each metabolite.  P < 0.05 
was considered as statistical significance.

To evaluate the differentially expressed metabolites, 
Hierarchical Clustering assay was applied to analyze the 
expression mode of metabolites.  We further conducted the 
metabolomics pathway analysis with the differentially 
expressed metabolites by Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis.

Results
Rat model for radiation-induced acute radiation enteritis 
(ARE)

Two days after radiation, ARE rats exhibited obvious 
diarrhea, but the control rats still defecated normally.  
Compared to control rats, abdominal irradiation caused 

obvious edema of intestinal wall and the intestinal contents 
became thinner (Fig. 1A, B).  Further H&E staining indi-
cated a dramatic destruction in the intestinal villi of irradi-
ated animals, whereas the intestinal villi of control rats kept 
smooth and intact (Fig. 1C, D), which was consistent with 
Li’s findings (Li et al. 2017b).  All these results confirmed 
the occurrence of ARE.

Quality control of untargeted metabolomics analysis
We applied Pareto scaling and 7-fold cross-validation 

to establish the PCA model using the molecular features of 
all the groups from the study, including quality control (QC) 
samples.  The distribution of metabolic profiles for the test 
samples and QC samples in PCA is exhibited in Fig. 2.  All 
the QC injections were clustered tightly in PCA space.  The 
consistency of the repeated QC injections and reliable data 
quality across all the specimens uncovered the potency of 
the metabolic profiling strategy during the experiment.  In 
the end, 6,044 positive peaks and 4,241 negative peaks 
were extracted using XCMS software.

Untargeted metabolomics analysis of serum obtained from 
control and ARE rats

Before analyzing the differentially expressed metabo-
lites, we first validated the algorithm model used in this 
study by OPLS-DA.  As shown in the score plots of 
OPLS-DA model, clear separation between ARE and nor-

Fig. 1.  Difference in bowel morphology between normal (CON) and acute radiation enteritis (ARE) rats.
The morphological changes of intestine after four days of radiation.  (A, B) Macroscopic images of intestine of repre-
sentative normal and ARE rats.  (C, D) Intestine structure of a representative normal and ARE rats, (H&E staining, 
×100).
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mal control groups was observed (Fig. 3A, B).  Specifically, 
the explanation rates for Y variable (R2Y) and prediction 
ability (Q2) were 0.998 and 0.788 in positive ion mode, and 
0.997 and 0.866 in negative ion mode, respectively, which 
confirmed the stability and reliability of the OPLS-DA 
model.  Moreover, the cross-validation through permuta-
tions tests (200 times) validated no overfitting of the models 
(generated intercepts of R2 = 0.995, Q2 = −0.0915 and R2 
= 0.973, Q2 = −0.18 for positive and negative ion mode, 
respectively) (Fig. 3C, D).  The heat map of hierarchical 

clustering analysis was another useful tool to evaluate the 
relationship among samples as OPLS-DA model, and reveal 
the expression differences of metabolites intuitively.  In Fig. 
4, we can see the similarity between the metabolite abun-
dance profiles, exhibiting a satisfactory discriminatory 
value between the two groups.

Fig. 2.  Principle component analysis (PCA) score plots based on the UHPLC-Q-TOF/MS data of serum samples. 
The distribution of metabolic profiles for the test samples and quality control (QC) samples in PCA.  (A) Positive ion 
mode; (B) Negative ion mode.  Con, normal rats; ARE, acute radiation enteritis rats; Q2, predictive ability; R2, good-
ness of fit.

Fig. 3.  Multivariate statistical analysis of metabolomics between normal (CON) and acute radiation enteritis (ARE) rats.
Orthogonal partial-least squares discrimination analysis (OPLS-DA) score plot derived from UHPLC-Q-TOF/MS-based 
metabolomics analysis between normal (green circles) and ARE rats (blue circles).  (A) Positive ion mode; (B) Negative 
ion mode.  Statistical validation of the OPLS-DA model by permutation testing.  (C) Positive ion mode; (D) Negative 
ion mode.
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Identification of differently expressed serum metabolites 
and KEGG analysis

Metabolites with the VIP value > 1 were submitted to 
Student’s t-test at univariate to check the differential expres-
sion levels.  Finally, we totally identified 66 differentially 
expressed metabolites (VIP > 1, P < 0.05) as potential bio-
markers for ARE diagnosis.  In positive ion mode, 13 
metabolites increased, and 18 metabolites decreased in 
ARE samples (Table 1), and in negative ion mode, 13 
metabolites increased, and 22 metabolites decreased (Table 
2).  Among all the differentially expressed metabolites, 
expression levels of anthranilic acid (vitamin L1) and hip-
puric acid decreased by nearly ten times, showing the most 
significant changes in positive ion mode and negative ion 
mode, respectively.

With the KEGG enrichment analysis, 14 pathways 
related to differentially expressed metabolites were identi-
fied.  Among all pathways, top enriched terms included 
central carbon metabolism in cancer, mineral absorption, 
protein digestion and absorption and so on (Fig. 5).  Among 
them, ABC transporters had the greatest number of over-
lapped compounds, which might play critical roles in the 
mechanisms of radiation-induced enteritis.

Discussion
Metabolomics is one of the most efficient tools to 

identify new diagnostic and prognostic markers for various 
diseases (Li et al. 2015; Sun et al. 2015; Shi et al. 2016; 
Wilson et al. 2019).  Although metabolome analysis is com-
monly conducted in multiple clinical tissues or biofluids 
(Brown et al. 2016; Sun et al. 2019), using animal model as 
a metabolic research vector for ARE demonstrates various 
advantages, because they are relatively stable and have 
higher controllability, but also avoid the collection of clini-
cal specimens.  Therefore, animal models are appropriate 
for preliminary ARE studies, based on which candidate bio-
markers can be explored.  In our study, the symptoms of 
rats, the intestinal changes of macroscopic images and 
pathology all confirmed the successful establishment of 
ARE model.

In this study, we performed an integrated metabolo-
mics analysis in rat ARE model and identified several 
potential serum biomarkers for ARE diagnosis.  Based on 
the OPLS-DA model, we identified 66 significantly differ-
entially expressed metabolites.  The cluster assay mani-
fested obvious different expression of each metabolite 
between normal and ARE rats.  Among all the differentially 
expressed metabolites, anthranilic acid (vitamin L1) and 
hippuric acid exhibited the most significant changes, which 
decreased by nearly ten times.  Anthranilic acid is a signifi-
cant aromatic intermediate in the degradation of tryptophan 
in kynurenine pathway.  Several research revealed its pre-

Fig. 4.  Heatmap of clustering analysis of ARE rats and normal controls.
Cluster assay was used to analyze the expression 66 identified metabolites in normal and ARE groups.  (A) Positive ion 
mode; (B) Negative ion mode.  Blue color was used to indicate decreasing of metabolites in ARE group.  Red color was 
used to indicate increasing of metabolites in ARE group.
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dictive value in diagnosis of type 1 diabetes mellitus and 
schizophrenia (Oxenkrug et al. 2015, 2016), but literature 
reporting its role in radiation injury is not available.  
Hippuric acid is a major human metabolite, which has been 
reported as a potential indicator for diabetic kidney disease 
and multiple sclerosis (Li et al. 2017a; Atya et al. 2018).  
Hippuric acid is also shown to be related to hepatic radia-
tion injury (Kurland et al. 2015).  Gut microbiome abnor-
malities may cause metabolic disorders (Fan and Pedersen 
2021).  The abnormal metabolites above may be related to 
the changes of gut microbiome (Nicholls et al. 2003).

To get a better view of the overall profile of metabo-
lites in ARE, we conducted the metabolomics pathway 
analysis with the differentially expressed metabolites by 
KEGG enrichment analysis.  We found that most metabo-
lites were enriched into 14 pathways, including central car-
bon metabolism in cancer, mineral absorption, protein 

digestion and absorption and so on.  Among them, ABC 
transporters had the greatest number of overlapped com-
pounds.  ABC transporters have been identified in many 
metabolomics studies on different diseases (Alakwaa et al. 
2018; Liu et al. 2019).  According to the previous literature, 
ABCA1, a key member of ABC transporters, has point 
mutation R219K that participates in the mechanisms of 
radiation-induced dermatitis (Isomura et al. 2008).  Their 
article revealed that ABC transporters might participate in 
the mechanisms of radiation-induced injury, which is accor-
dant with our findings.  Besides, other pathways also exhib-
ited preliminary association with the development of ARE.  

This study has several limitations.  First, the sample 
size was small with just 25 SD rats.  If more samples are 
available, more satisfactory results may be obtained.  
Second, we just analyzed the serum metabolites profiles by 
untargeted metabolomics, and if comparative analysis with 

Table 1.  Metabolites changed in acute radiation enteritis (ARE) model (positive ion mode).

Name Description VIP Fold change P-value

M138T542 Anthranilic acid (Vitamin L1) 2.35104 0.105056798 8.46548E-15
M426T426 Cholic acid 1.539 0.223951201 0.000109244
M190T201 1H-Indole-3-propanoic acid 1.63636 0.260969767 3.69516E-07
M468T367 1-Myristoyl-sn-glycero-3-phosphocholine 1.09014 0.344706634 1.30692E-11
M360T754 Cellobiose 2.84827 0.365165177 1.4588E-05
M757T266 PC (16:0/16:0) 1.31477 0.452339803 5.80328E-06
M787T98 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine 2.1203 0.50182228 7.71342E-06
M522T340 1-Oleoyl-sn-glycero-3-phosphocholine 1.59205 0.518717984 2.62806E-09
M123T104 Nicotinamide 1.33369 0.522335307 3.59305E-05
M568T334 1-Stearoyl-sn-glycerol 3-phosphocholine 1.06744 0.527817393 8.50122E-08
M568T347_2 1-Stearoyl-2-hydroxy-sn-glycero-3-phosphocholine 2.90213 0.580982355 2.46018E-06
M759T140 Thioetheramide-PC 4.0512 0.634027766 0.041542231
M116T591 D-Proline 1.58999 0.746984412 0.000318848
M496T358_6 1-Palmitoyl-sn-glycero-3-phosphocholine 7.56858 0.753737104 0.001989698
M134T56 Oxindole 1.1627 0.755107192 0.024023081
M127T184 Thymine 2.15351 0.75949722 0.042436024
M198T586 D-Mannose 2.1822 0.788858491 0.029244988
M162T702 L-Carnitine 2.33122 0.803923678 0.024431148
M204T581_1 Acetylcarnitine 1.30131 1.36286635 2.46186E-05
M213T806 Triethanolamine 1.36728 1.448326428 0.021307703
M263T495_2 L-Norleucine 1.43561 1.454400984 0.009826322
M380T531 D-erythro-Sphingosine-1-phosphate 1.8936 1.549194113 0.000185891
M331T481 DL-Phenylalanine 1.58168 1.599719782 0.010297971
M133T718 L-Asparagine 2.54643 1.711577394 1.59898E-05
M112T456 Cytosine 2.25701 1.776507878 5.20017E-05
M276T732 L-Pyroglutamic acid 1.79598 1.791179823 0.002031896
M245T305 Uridine 1.57054 1.84170737 0.04745144
M216T756 sn-Glycerol 3-phosphoethanolamine 1.60052 1.998519718 0.008724778
M104T511 Choline 1.5913 2.074146034 0.009726898
M811T137 1-Stearoyl-2-oleoyl-sn-glycerol 3-phosphocholine 1.59529 2.363577649 0.014745039
M132T703 Creatine 1.90859 2.492152245 0.003800136

VIP, the variable importance in the projection.
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metabolites profiles of intestinal tissues is performed, the 
results may be more meaningful.  In addition, all data in 
this study are obtained based on animal samples, which 
need validation in human samples.

In summary, we observed profiles of serum metabo-
lites in ARE.  Several differentially expressed serum metab-
olite were found as potential diagnostic biomarkers of ARE, 
and the pathways responsible for ARE development were 
also explored.  These results may provide latent clues for 
ARE related research and less invasive diagnosis.
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Table 2.  Metabolites changed in acute radiation enteritis (ARE) model (negative ion mode).

Name Description VIP Fold change P-value

M242T458 Cytidine 1.01366 2.273262 0.000211
M103T385 2-hydroxy-butanoic acid 1.04305 1.766476 0.017277
M111T163 Uracil 1.98626 1.763974 0.029072
M199T88 Dodecanoic acid 2.89737 1.715666 0.00509
M103T466 D(-)-beta-hydroxy butyric acid 1.55693 1.630876 0.022899
M154T748 L-Histidine 2.93701 1.4856 0.020178
M303T78 Arachidonic Acid (peroxide free) 8.83898 1.428324 0.01473
M331T77 Adrenic Acid 3.22814 1.420699 0.017129
M116T571 L-Valine 1.36692 1.403015 0.001152
M226T393 Deoxycytidine 1.60153 1.332033 0.002327
M89T495 DL-lactate 1.01463 1.318664 0.03806
M164T482 L-Phenylalanine 1.56677 1.29007 0.008941
M130T496 L-Isoleucine 1.96772 1.284513 0.032208

M141T651_1 2-Oxoadipic acid 3.979 0.909297 6.54E-05
M307T79 11(Z),14(Z)-Eicosadienoic Acid 1.20875 0.800079 0.042495
M213T291 m-Chlorohippuric acid 1.00371 0.775288 0.018977
M161T588 D-Tagatose 1.28494 0.743228 0.000713
M114T593 L-Proline 1.0367 0.734349 0.00015
M179T573 Alpha-D-Glucose 5.19967 0.704439 0.001102
M212T54 Indoxyl sulfate 6.63785 0.610939 0.006602
M297T89 Nname,cis-9,10-Epoxystearic acid 1.44621 0.610299 0.042923
M71T588 Dihydroxyacetone 3.82948 0.593026 0.000439
M432T182 Glycolithocholic acid 3.03497 0.544063 0.003026
M295T88_2 13(S)-HODE 2.281 0.515801 0.002587
M182T78 4-Pyridoxic acid 1.05022 0.509796 0.001129
M465T51 Cholesterol 3-sulfate 2.51353 0.411366 0.019309
M177T199 L-Gulonic gamma-lactone 8.43768 0.399621 0.000332
M451T292 Chenodeoxycholate 2.05113 0.348401 0.001598
M174T744 L-Citrulline 1.33624 0.262892 7.93E-09
M188T203 3-Indolepropionic acid 7.74442 0.250502 4.43E-07
M407T431 Cholic acid 2.16337 0.227481 2.73E-05
M186T211 Indoleacrylic acid 

3,4-Dihydroxybenzoate (Protocatechuic 
acid)

2.72592 0.216533 3.01E-09
M153T51 2.01679 0.202945 1.76E-13

M137T72 Salicylic acid 1.39911 0.186419 1.08E-10
M178T379 Hippuric acid 1.81315 0.102516 5.89E-11

VIP, the variable importance in the projection.
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