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Since the middle of the last century, there have been amazing therapeutic advances for hemophilia such as
the development of plasma-derived products and bioengineered recombinant factors VIII and IX (for
hemophilia A and B, respectively) with improved stability, higher activity, and extended half-life. The recent
use of a monoclonal antibody that mimics factor VIII activity (which is an efficient treatment for all
hemophilia A phenotypes with or without inhibitors) has shown the great possibilities of non-factor therapies
for improving the quality of life of hemophilia A patients, with a safer application and long-lasting effects.
Gene therapy offers the promise of a “true cure” for hemophilia based on the permanent effect that a gene
edition may render. Clinical trials developed in the last decade based on adenoviral vectors show modest
but consistent results; now, CRISPR/Cas technology (which is considered the most efficient tool for gene
edition) is being developed on different hemophilia models. Once the off-target risks are solved and an
efficient switch on/off for Cas activity is developed, this strategy might become the most feasible option for

gene therapy in hemophilia and other monogenic diseases.
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Introduction

Hemophilia is characterized by a functional deficiency
of factor VIII (FVIII) or factor IX (FIX) secondary to
pathogenic variants in the F§ (Hemophilia A, HA) or F9
(Hemophilia B, HB) gene whose respective /oci are located
near the Xq telomere region. Both diseases are X-linked
recessive traits and typically affect males while carrier
females are non-symptomatic. According to the plasma
concentrations of functional proteins, the disorder is classi-
fied as mild (> 5-40 IU/dL), moderate (1-5 IU/dL), or
severe (< 1 IU/dL) (Blanchette et al. 2014).

Worldwide, 324,648 patients with a bleeding disorder
(hemophilia, von Willebrand disease, or other rare diseases)
were recently reported by the World Federation of
Hemophilia. Of this total, 195,263 persons were diagnosed
with hemophilia (World Federation of Hemophilia 2019).
Nonetheless, a meta-analysis based on the national regis-

tries from six high-income countries, establishes a higher
prevalence of hemophilia than that previously estimated. If
we consider the global population of 7.5 billion inhabitants
(3.8 billion males), a prevalence at birth (per 100,000
males) of 17 cases for all severities of and four cases of
HB, and the inherent life expectancy disadvantage (life lost,
years of life with disability and disease burden), almost
794,000 males could be hemophiliacs, including about
270,000 severely affected (Iorio et al. 2019; World
Federation of Hemophilia 2019).

Without appropriate treatment, life expectancy of
severely ill patients is reduced by 10 years compared with
the general population. Prophylaxis based on protein sub-
stitution therapy (PST), through intravenous administration
of recombinant or plasma-derived clotting factors, is con-
sidered a gold standard to avoid spontaneous bleeding epi-
sodes (Evens et al. 2018). Absence of PST triggers repeti-
tive bleeding and chronic injuries and results in a long
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recovery period that affects the daily activities of patients
(Guo et al. 2019). PST is the current treatment for hemo-
philia and has important advantages like easy administra-
tion, prolonged coagulant activity, and safety. However,
PST has the following drawbacks: a short half-life (12-24
hours) requiring frequent dose administration; development
of inhibitors against plasma-derived or recombinant pro-
teins; a very high cost (approximately $300,000 US per
year in adults) (High et al. 2014); and more importantly,
PST is not a cure for hemophilia (Evens et al. 2018).

This narrative review provides a general outlook of the
amazing therapy development for hemophilia with an
emphasis on gene therapy approaches. In the last two
decades, novel therapies have been developed by bioengi-
neering to provide stable and safe expression of the defi-
cient FVIII and FIX proteins. Alternative approaches to
PST have emerged; for instance, monoclonal antibodies that
mimic the FVIII function, gene therapy through viral vec-
tors or DNA plasmids, and gene edition with enzyme sys-
tems are some strategies aimed to “cure” hemophilia.
However, in the case of adeno-associated virus (AAV),
which are the most popular viral vectors for gene therapy in
hemophilia, preexisting viral infections with some sero-
types may prevent a considerable number of individuals
from the general population from receiving this strategy.
Additionally, known and unknown immune responses, cel-
lular stress, and possible random integration of viral vectors
continue to challenge the provision of safe gene therapy
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(Weyand and Pipe 2019). New experimental models for
gene edition that use the clustered regularly interspersed
palindromic repeats (CRISPR) and their associated Cas
proteins (CRISPR/Cas system), as alternative strategy to
viral vectors, promise to provide an effective cure for hemo-
philia patients in the years to come (Fig. 1).

Current Management and Treatments in
Hemophilia

The prophylactic infusion of factor concentrates is the
most widely employed treatment for severely ill pediatric
and adult patients with hemophilia (PWH). For HA and
HB, the specific concentrates aim to achieve hemostatic
levels of circulating FVIII or FIX to reduce or even avoid
spontaneous bleeding events. An increase of at least 1% of
circulating clotting factor activity in such patients is essen-
tial to prevent bleeding episodes; however, aspects like
product type (recombinant or plasma-derived factors), phar-
macokinetic (PK) parameters (frequency and magnitude of
activity peaks), and the patient’s biology may influence
hemostatic efficiency and ultimately determine a successful
treatment (Hermans and Dolan 2020).

The recently developed ‘“next-generation proteins”
seek to extend the half-life (EHL) of therapeutic coagulant
factors. These drugs have the potential to remain active for
a longer duration in plasma; therefore, the factor infusion
frequency decreases considerably. An alternative approach
to EHL proteins stimulates hemostasis via non-factor thera-

Antibodies (Emicizumab)

Mimic function of FVIII

Bispecific antibody
(Emicizumab)

Gene Therapy

Based on enzymes

&

Zinc Fingers

Created in BioRender.com bio

CRISPR/Cas

Fig. 1. Current replacement treatments and gene therapy strategies for hemophilia.
EHL, extend the half-life proteins; FVIII, factor VIII; TAL, transcription activator-like; CRISPR, clustered regularly in-
terspaced short palindromic repeats; Cas, CRISPR associated protein. The figure was created by the first author with
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pies; for instance, monoclonal antibodies are a valuable
choice in patients with or without inhibitors because a dose
administered subcutaneously once per month avoids bleed-
ing episodes and considerably enhances the patient’s life
quality (Morfini and Marchesini 2020).

Next-Generation Recombinant Factors

In the early 2010s, EHL factors were engineered from
recombinant proteins that underwent two main modifica-
tions: A) the fusion of fragments from other proteins like Fc
of immunoglobulin G (IgG) or albumin; and B) the addition
of polymers like polyethylene glycol (PEG) (Mannucci
2020). Neonatal Fc receptor enables factor recycling in
plasma and prolongs the recirculation and effective activity
of EHL factors (Dumont et al. 2012; Schulte 2013) while
the slow degradation and renal elimination of PEG further
enhance the maintenance and recirculation of such com-
plexes (Ivens et al. 2013; Swierczewska et al. 2015). While
standard recombinant factors are generally administrated
twice per week, EHL concentrates can be given once per
week or less depending on the frequency of bleeding epi-
sodes (Collins et al. 2016).

Fe-fusion domains

The Fc receptor binding ability is expressed in the
endothelial cells of the vasculature and offers protection
from endocytosis and lysosomal degradation. Recombinant
FVIII Fc-fusion protein (rFVIIIFc) that joins a FVIII mole-
cule with a Fc domain of human IgG1 was the first EHL
protein approved as a prophylaxis treatment for HA patients
in the European Union and the United States (Powell et al.
2012; Mahlangu et al. 2014). The rFVIIIFc circulation/
long-term efficacy and safety have been documented in sev-
eral clinical trials (Morfini and Marchesini 2020).

Albumin-fusion molecules

Albumin is the most abundant protein in plasma and
has been used as a ligand in EHL factors for hemophilia,
with an average of 20 days of activity (Santagostino et al.
2012). Recombinant fusion of FVIII and FIX factors with
albumin is designed to improve the coagulation factor
activity for HA or HB patients with inhibitors. The mole-
cule complex is produced by the fusion of the wild-type
factor and recombinant albumin through a linker produced
in Chinese hamster ovary cells. The modification of the
wild amino acid sequence of the coagulation factors is not
required to produce the fusion protein; besides, the protein
complex can simulate the wild-type FVIII or FIX protein’s
activity (Negrier 2016; Escobar et al. 2019).

PEGYylation

PEGylation or addition of PEG molecules confers a
slow degradation of coagulant proteins in plasma.
PEGylation addition can be site-specific or random
(Mancuso and Santagostino 2017) and improves the half-
life in comparison to FVIII and FIX recombinant factors.

While PEGylation has demonstrated a better PK profile,
some cellular effects are associated with long-term PEG
exposition; for instance, PEG vacuole formation in choroid
plexus cells of the blood-brain barrier but without gross cel-
lular damage (Escobar et al. 2019).

PEGylation, Fc-fusion domains, and albumin-fusion
molecules are on the way to replace the conventional PST
due to their hemostatic regulation ability and extended half-
life in plasma (Croteau et al. 2021). However, some next-
generation factor assays (albumin-fusion or PEGylation)
report that those molecules may interfere with the normal
extravascular distribution of coagulation factors or the
development of antibodies against the complementary mol-
ecule epitopes and hence generate clinical concerns due to
the discordance between bleeding symptoms and factor
activity in patients with HB (Kleiboer et al. 2020; Malec et
al. 2020). Therefore, further studies are required to test
their safety as a prophylactic treatment.

Emicizumab

HA patients have another option beyond traditional
PST with non-factor therapies. Designed to replace the
activated FVIII (FVIIIa) function, Emicizumab
(HEMLIBRA®, Roche, Genentech, Inc., South San
Francisco, CA, USA) is a humanized bispecific monoclonal
antibody that supports the spatial interaction between acti-
vated FIX (FIXa) and FX and promotes thrombin formation
by mimicking FVIIIa activity. It has demonstrated excel-
lent efficacy with limited adverse effects in HA patients
with and without inhibitors (HAVEN clinical trials)
(Oldenburg et al. 2017; Mahlangu et al. 2018; Young et al.
2019) and is currently used in all HA cases regardless of
their FVIII level, inhibitor presence, age, or bleeding sever-
ity (Kitazawa et al. 2012; Manucci 2020).

Prophylactic subcutaneous administration of
Emicizumab (HEMLIBRA™) has demonstrated clinical effi-
cacy despite the inability of coagulation assays to monitor
or quantify its hemostatic effect. Emicizumab has been
well tolerated by patients, but its use in combination with
other bypass agents like activated prothrombin complex
concentrates (aPCCs) is not recommended due to increased
thrombotic risk (Hartmann et al. 2018). The main charac-
teristics of all current modalities for hemophilia treatment
are described in Table 1.

Despite all advantages of next-generation factors, it is
necessary to develop a permanent cure for hemophilia
patients (VandenDriessche and Chuah 2017). The potential
of gene therapy to correct or modify pathogenic variants in
vitro through vector or enzyme strategies is expected to
provide effective and long-lasting treatments for hemophilia
and other monogenic diseases. Hemophilia, as a single-
gene disease, is an excellent candidate for gene therapy
(Guo et al. 2019) aimed to deliver a long-life treatment via
a unique intervention (Mannucci 2020) (Fig. 1). Although
EHL factors have demonstrated an elongated pharmacoki-
netic propriety, compared to standard recombinant factors,
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Table 1. Main characteristics of current replacement treatments for hemophilia.
Pl Half-Lif
Treatment Population Target Administration asma Halt-Lie Properties Side Effects
(hours or days)
Recombinant proteins
le i F- 1
FVIII concentrate IS\ItZﬁ z:To\;v\Kiox(i:c()i:np e Development of inhibitors
(Lieuw 2017; Hermans HA patients ~ Plasma Intravenous 8-12h Progressive and ay ) Constant infusion with low
and Dolan 2020) ogresstve and easy half-life
elimination
Extravascular storage,
FIX concentrate . Endothelial cells null or low toxicity, Fast degradation by no-
HB patient: Int 16-24 h . .
(Hermans and Dolan 2020) patients and plasma niravenous progressive and easy complex formation
elimination
Next-g ation r binant factors
. Longer dosing intervals with
Fe-Fusion functional factor, reduced Hypersensitivity, nephrotic
(Manucci 2020; Meeks HAand HB  Endothelial cells rEVIIIFc: 19 h . L P i p
. . Intravenous immunogenicity and syndrome, thrombosis,
and Lacroix-Desmazes patients and plasma FIXFc: 82 h . . .
. inflammation, tolerance immunomodulatory effects
2020; Shapiro et al. 2020) . .
induction
. . . - . Hypersensitivity, nephrotic
Albumin-fusion proteins . Longer dosing intervals with .
. . HA patients ~ Plasma Intravenous rFIXFP: 101 h X syndrome, thrombosis,
(Ljung 2018; Manucci 2020) functional factor
Immunomodulatory effects
PEGylati M Jit - -
Y a' ton . HA and HB gcrop ages, . FVIIL: 14-19 h Null or low toxicity, easy Development of antibodies
(Morfini and Rapisarda atients reticuloendothelial ~ Intravenous FIX: 93 h administration anti-PEG
2019; Manucci 2020) p cells and plasma :
Antibodies
Emicizumab
(Oldenburg et al. 2017, HA patients High cost, possible devel-
Mahlangu et al. 2018; with and Low doses of administration, opment of inhibitors due to
. gt Subcut: About 30 d . . . .
Young et al. 2019; without asma ubcutancous ou few bleeding episodes trauma, possible thrombotic
Manucci 2020; inhibitors events

Croteau et al. 2021)

FVIII, factor VIII; FIX, factor IX; HA, hemophilia A; HB, hemophilia B; PEG, polyethylene glycol; rFIXFc, recombinant factor IX Fc
fusion protein; rFIXFP, recombinant factor IX Albumin fusion protein; rEVIIIFc, recombinant factor VIII Fc fusion protein; vWF, von

Willebrand factor.

they have still to be tested in a clinical study (Preijers et al.
2021).

Hemophilia-Like Model Disease for Gene Therapy

The main purpose of gene therapy is to correct dis-
eases caused by gene dysfunctions. This technology is
applied to several human diseases like cancer and cardio-
vascular and neurodegenerative disorders; however, the
most promising application is on monogenic diseases asso-
ciated with a well-characterized defective gene like hemo-
philia. Under this principle, the integration of a normal
coding sequence into the genome of patients with severe
hemophilia (ex vivo therapy) could result into a moderate or
mild phenotype (Guo et al. 2019). Hence, hemophilia is the
perfect candidate for gene therapy. The goal of this single-
step strategy is to obtain a stable high-level expression of
circulating coagulation factors (FVIII and FIX) and thus
correct the hemorrhagic phenotype throughout life
(Mannucci 2020).

Not only does a “true cure” for hemophilia require the
introduction of a coding sequence but it is also necessary to
select an appropriate delivery strategy depending on the tar-

get cells to enable the cassette expression for FVIII or FIX
production. Also, the therapeutic gene must be integrated
into a specific locus and the target cells should be non-
dividing post-mitotic cells (e.g., hepatocytes or skeletal
muscle cells). Additionally, the need for immune tolerance
induction to coagulation factors after gene therapy depends
on several variables like vector design, target cells, and
pathogenic variant (Evens et al. 2018). Alternatively, the
F8 or F9 gene could be delivered through proper vectors
into stem/progenitor cells with convenient differentiation-
proliferative capacity and immunoregulatory proprieties
(Olmedillas Lopez et al. 2016).

AAV Vectors on Hemophilia Treatment

Adeno-associated virus (AAV) is the most used viral
vector for gene therapy in hemophilia. AAV is a non-envel-
oped parvovirus capable of safely delivering DNA into cells
and generating recombinant molecules with eukaryotic
genes that will produce the corresponding proteins.
Because these viruses have a limited packing capacity of up
to five kb of DNA and their integration efficiency into the
host-cell genome is restricted only to the 4A4VS!I locus on
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chromosome 19 (Kotin et al. 1992), the resulting gene
expression is often transitory especially on active dividing
cells (Asokan et al. 2012).

The vectors AAV 2/8 and AAVS with several modifica-
tions to improve the specificity and infection of target cells
are usually used in hemophilia (Croteau et al. 2021). The
first AAV clinical trial involved ten patients with severe HB
at the Royal Free Hospital, London, UK. Six of them
received a single high dose of AAVS with a current follow-
up of four years and have shown a stable transgene expres-
sion with FIX plasma levels between 2% and 5% as well as
reduced bleeding episodes (Nathwani et al. 2014; Mannucci
2020). Among modified AAV vectors, the FIX-Padua vari-
ant (FIXR338L) confers FIX coagulant hyperactivity
(approximately 8-fold) as compared with wild-type FIX
(Monahan 2015). Indeed, gene therapy with the Padua
variant (FIXR388L) has shown stable and prolonged pro-
tein expression (33.7%) in plasma for at least 52 weeks in
patients with HB (George et al. 2017).

For HA, a few clinical trials have tested AAV vectors
carrying a modified F'§ gene with either a codon optimiza-
tion (ubiquitination or specific amino acid sequence) or a
deletion resulting in a FVIII without the B-domain (BDD-
F8) but still compatible with a normal coagulant function
and sufficient cassette packing (George and Fogarty 2016).
BDD-F8 delivery by AAVS5 has been approached under sur-
veillance for possible immune reactions and controlled by
prednisolone. This trial has shown relatively stable FVIII
plasmatic activity (until 1 TU/dL) for three years in two
patients after infusion (Pasi et al. 2020). Despite efforts to
optimize the gene therapy through AAV vectors, previous
exposure to AAV environmental serotypes generates neu-
tralizing antibodies in 20-60% of the general population
(Croteau et al. 2021). Therefore, many AAV-positive
hemophilia patients must be excluded as candidates for
therapy with AAV vectors.

Other strategies for the correction of a pathogenic vari-
ant are some enzyme systems. Zinc-finger proteins (ZFN)
or transcription activator-like effector nuclease (TALEN)
are designed to cleave specific sequences and subsequently
generate knockouts by non-homologous end joining
(NHEJ). Knocking with the wild-type sequence template
can also be achieved by homologous direct recombination
(HDR) using the natural DNA repair systems of cells.

Recently, the clustered regularly interspersed palin-
dromic repeat (CRISPR) system, which works with a spe-
cific RNA guide sequence complementary to the target site,
has emerged as a more specific and easier to use (in com-
parison to ZFN or TALEN) methodology. Thus, CRISPR
technology is the perfect choice for generating monogenic
disease models and correcting pathogenic variants (Ward
and Walsh 2016).

CRISPR/Cas as a Gene-Edition Strategy for
Monogenic Diseases

CRISPR system and CRISPR-associated proteins (Cas)

constitute an adaptive immune system in Archaea and bac-
teria; it is composed of two classes, six types, and 33 sub-
types of proteins with several functions. The class 1 system
includes several Cas proteins to cleave the DNA while the
class 2 system has a single, large, and multidomain binding
Cas protein that can work as a class 1 complex (Makarova
et al. 2020). Particularly, S. pyogenes Cas9 (type 1l from
the class 2 CRISPR/Cas system) is the enzyme most widely
used to modify eukaryotic genomes (Newsom et al. 2021).
Cas9 works with the Watson-Crick complementarity princi-
ple between RNA and DNA; therefore, the use of single-
guide RNA (sgRNA) to flank a 20-nucleotide complemen-
tary sequence is enough to generate a double-stranded break
(DSB) and induce a NHEJ next to the protospacer adjacent
motif (PAM) from the binding site (Gonzalez-Romero et al.
2019). sgRNA and Cas9 complex can induce a DSB in any
site-specific DNA target, demonstrating the wide spectrum
of CRISPR/Cas9 system applications as a genome editing
strategy on bacterial DNA (Jinek et al. 2012; Doudna and
Charpentier 2014) or in different types of human cells (Mali
et al. 2013; Jinek et al. 2013).

Cas9 and sgRNA can be introduced into target cells
with several strategies like plasmid DNA, lentiviral vectors,
mRNA, or pre-assembled ribonucleoprotein (RNP) com-
plexes for in vitro, in vivo, and ex vivo approaches (Lino et
al. 2018). RNP complex is one of the best options for clini-
cal therapy because of its high efficiency and ephemeral
action (low nuclease exposition on genome’s cells), a con-
dition that decreases the risk of off-target effects (Gonzalez-
Romero et al. 2019). The risk of non-specific or off-target
cleavage is about once per thousand cells or higher; there-
fore, the efficiency and safety of the CRISPR edition, as
well as the potential risks of genotoxic non-specific cleav-
ages, must be evaluated (Ward and Walsh 2016; Gonzalez-
Romero et al. 2019).

A possible solution to off-target risk is the Cas9 substi-
tution by other Cas proteins (like Casl2a, also known as
“Cpfl”) (Zetsche et al. 2015), or the use of nucleases
guided by two different sgRNAs but targeting the same
DNA locus, though in opposite senses to make the gene
edition safer and more controlled (Wu et al. 2018). The
main unknowns that should be clarified to implement the
CRISPR/Cas9 system for gene edition of complex patholo-
gies like cancer or autoimmune diseases are the minimum
number of necessary edited cells to rescue the function and
the immune response against the system (Shi et al. 2018;
Gonzalez-Romero et al. 2019).

CRISPR/Cas9 and Hemophilia

CRISPR/Cas9 offers great potential in research and
translational studies in hematological diseases. Researchers
use the system to generate cell cultures or experimental ani-
mal models with known pathogenic variants; however, the
main goal is the ex vivo correction in the patient’s cells.
The edition of a pathogenic variant on genomic DNA might
be a definitive treatment through autologous transplants
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from patients to avoid the possible adverse effects as an
immune system reaction (Gonzalez-Romero et al. 2019).
The CRISPR/Cas9 system has been used in hemophilia
experimental in vitro, in vivo and in situ models, but no
human clinical trial has been attempted yet (Guan et al.
2016; Croteau et al. 2021).

Particularly, induced pluripotent stem cells (iPSCs)
and hepatic, endothelial, and platelet cells have been used
to generate knock-out and knock-in models for HA therapy
in which the CRISPR system and BDD-F'§ modified protein
could reverse the HA phenotype (Table 2). The CRISPR/
Cas9 system has also been used to generate HB models in
mice, dogs, and pigs in which plasma therapeutic values of
the FIX protein are achieved after gene edition (Table 3).

In vivo gene edition trials for hemophilia are being
developed despite the possible off-target effects of CRISPR
technology. This is the most important concern when
CRISPR is considered as therapy for hemophilia patients,
especially in non-controlled in vivo gene edition; besides,
the delivery strategy for some tissues may result in an
immune response. Therefore, the CRISPR/Cas system in
PWH would need constant and systemic monitoring of
undesired off-target effects for years, compared to ex vivo
editing, which is more simple and tissue-specific. Future
safe clinical applications of the CRISPR system will require
gene edition control tools such as turning the on/off
switches of Cas activity according to some specific condi-
tions, to avoid prolonged DNA rupture (Ernst et al. 2020).

However, the easy implementation and development
of a CRISPR/Cas strategy for gene edition (with just one or
two guide RNAs needed to flank a DNA /ocus) might allow
for a specific and personalized gene therapy, regardless of
the PWH’s pathogenic variant (Chen et al. 2019).
Particularly, the CRISPR/Cas system in hemophilia remains
a promising option because it is possible to edit different
cell types that can produce active FVIII and FIX factors.
CRISPR/Cas system has not yet been used on hemophilia
patients, but a wide variety of pathologies like hereditary
immune system disorders, congenital eye diseases, lipopro-
tein lipase deficiency, and genetically engineered T cells for
cancer are some examples in which the ex vivo gene therapy
with the CRISPR system works as an alternative to conven-
tional pharmacotherapy (Odiba et al. 2021).

To date, CRISPR/Cas9 system is recognized as the
most feasible tool for therapeutic gene edition; however, its
use is limited because it is associated with a possible high
frequency of off-target cleavages (Croteau et al. 2021).
Technical limitations and long-term safety after gene edi-
tion are still to be overcome before the use of the CRISPR/
Cas9 system evolves from a plausible promise to “the true
hemophilia cure”. New experiments and long clinical trials
are necessary to assess the risk-to-benefit ratio of CRISPR/
Cas9 therapy before its direct use with hemophilia patients
(Gonzalez-Romero et al. 2019; Wang et al. 2019; Pipe and
Selvaraj 2019).

Because the implicit scientific, ethical, and technologi-

cal challenges, gene therapy requires more effort and larger
clinical trials to facilitate its translation into clinical practice
(Pipe and Selvaraj 2019). Recently published works on
gene therapy for hemophilia depict an outlook of this strat-
egy as a plausible treatment for different genetic diseases;
in the future, it might be included by health systems as a
definite cure for genetic disorders (Ernst et al. 2020).

Conclusions

The traditional replacement therapy for hemophilia has
been substituted for novel treatments such as the bioengi-
neered factor VII and IX molecules and non-factor treat-
ment like Emicizumab antibody, which constitute efficient,
safe, and long-lasting therapies that improve the quality of
life of hemophilia patients more than ever.

Despite their amazing effectiveness, these therapies
have limited coverture according to the half-life of recom-
binant proteins. This is overcome by gene therapy that
potentially offers a definite cure through the correction of
the pathogenic variants causing hemophilia.

Currently, gene therapy for hemophilia is more tangi-
ble due to advances and results in clinical trials with AAV
vectors; however, in the better of future scenarios, viral
vectors will be replaced by more secure and specific strate-
gies like the CRISPR/Cas system. Any pathogenic variant
that causes hemophilia could be corrected through ex vivo
therapy in the patient’s cells, generating an individual and
specific treatment for each hemophilia patient with the
promise of a “real” long-term treatment without the contin-
uous factor infusion or the risk of developing inhibitors.

CRISPR/Cas for gene therapy will soon be the first
choice for hemophiliacs who are most severely affected by
the disease. With the recent technical advances for safety
optimization, gene transfer has matured as a real therapeutic
option for hemophilia and other bleeding disorders, making
it an individualized medicine approach of great interest for
research, translational medicine, and the pharmaceutical
industry.
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