

Clinicopathological Role of Vasohibin in Gastroenterological Cancers: A Meta-Analysis

Miho Yamamoto,¹ Soji Ozawa,¹ Kazuo Koyanagi,¹ Yamato Ninomiya,¹ Hitoshi Hara,¹ Akihito Kazuno,¹ Kentaro Yatabe,¹ Tadashi Higuchi,¹ Kenji Nakamura,¹ Kazuhito Nabeshima¹ and Yasufumi Sato²

¹Department of Gastroenterological Surgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
²New Industry Creation Hatchery Center, Tohoku University, Sendai, Miyagi, Japan

Vasohibin-1 (VASH1) is an angiogenesis inhibitor, while vasohibin-2 (VASH2) is a proangiogenic factor. The roles of VASH1 and VASH2 expression in gastroenterological cancers remain unclear. We searched for relevant literature, specifically studies on gastroenterological cancer, and evaluated the relationship between VASH expression and clinical outcomes. Nine studies on VASH1 involving 1,574 patients were included. VASH1 expression was associated with the TNM stage [OR (odds ratio) 2.05, 95% CI (confidence interval) 1.24-3.40], lymph node metastasis (OR 1.79, 95% CI 1.24-2.58), lymphatic invasion (OR 1.95, 95% CI 1.41-2.68), and venous invasion (OR 2.49, 95% CI 1.60-3.88); poor clinical outcomes were associated with high VASH1 expression. High VASH1 expression was associated with a significantly shorter overall survival (OS) [HR (hazard ratio) 1.69, 95% CI 1.25-2.29] and disease-free survival (DFS) (HR 2.01, 95% CI 1.28-3.15). Three studies on VASH2 involving 469 patients were analyzed. VASH2 expression was associated with the TNM stage (OR 4.21, 95% CI 1.89-9.51) and venous invasion (OR 2.10, 95% CI 1.15-3.84); poor clinical outcomes were associated with high VASH2 expression. High VASH2 expression was associated with a significantly lower OS (HR 1.61, 95% CI 1.09-2.37). In conclusion, high VASH1 and VASH2 expression levels were associated with poor clinical outcomes and prognosis in patients with gastroenterological cancers.

Keywords: angiogenesis; gastroenterological cancer; meta-analysis; vasohibin-1; vasohibin-2 Tohoku J. Exp. Med., 2022 April, **256** (4), 291-301. doi: 10.1620/tjem.2022.J005

Introduction

Vasohibins (VASH), which are novel angiogenesis regulators, consist of two subtypes; asohibin-1 (VASH1), and its homologue Vasohibin-2 (VASH2) (Watanabe et al. 2004; Shibuya et al. 2006). VASH1 is an endogenous angiogenesis inhibitor that was originally identified in a microarray analysis of genes upregulated by vascular endothelial growth factor (VEGF) in vascular endothelial cells (ECs) (Watanabe et al. 2004). VASH1 is mainly expressed in ECs in the termination zone to halt angiogenesis. Meanwhile, VASH2 is an endogenous proangiogenic factor, and the amino acid sequence of human VASH2 protein is 52.5% homologous to that of human VASH1 protein (Shibuya et al. 2006). VASH2 is mainly expressed on cancer cells and on CD11b-positive mononuclear cells mobilized from the bone marrow at the sprouting front to stimulate angiogenesis. Both VASH1 and VASH2 have been reported as prognostic factors for several types of cancer (Tamaki et al. 2009; Miyazaki et al. 2012; Takahashi et al. 2012; Kosaka et al. 2013; Zhang et al. 2014; Mikami et al. 2017; Torii et al. 2017). However, the role of VASH1 and VASH2 expression in gastroenterological cancers remains unclear. In this study, we reviewed and conducted a metaanalysis to clarify the relationship between vasohibin expression in gastroenterological tumors and clinicopathological factors.

Materials and Methods

This meta-analysis followed the Prisma guidelines (Moher et al. 2010).

Received November 14, 2021; revised and accepted December 12, 2021; J-STAGE Advance online publication March 17, 2022

Correspondence: Soji Ozawa, M.D., Ph.D. F.A.C.S., Department of Gastroenterological Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.

e-mail: soji888@gmail.com

^{©2022} Tohoku University Medical Press. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC-BY-NC-ND 4.0). Anyone may download, reuse, copy, reprint, or distribute the article without modifications or adaptations for non-profit purposes if they cite the original authors and source properly. https://creativecommons.org/licenses/by-nc-nd/4.0/

Literature search strategy

We searched for relevant articles in Google Scholar and PubMed using the following keywords: "vasohibin," "vasohibin-1," "vasohibin-2," "cancer," "carcinoma," and "expression." Also, the reference lists of the included studies and related comments were manually filtered to search for new studies of possible relevance.

Inclusion and exclusion criteria

Studies were included if they (1) were studies on gastroenterological cancer, (2) evaluated the relationship between VASH expression and clinical outcomes, (3) reported the clinicopathological parameters of the subjects, and (4) were written in English. The exclusion criteria were as follows: (1) studies on cancers other than gastroenterological cancer, and (2) studies in which the clinical course or clinicopathological factors were not reported.

Data extraction

The following data were recorded from all eligible studies; (1) the first author's name and year of publication, (2) the study's nationality, (3) cancer types, (4) sample and pathology type, (5) the cut-off value and assay method, (6) follow-up period (in months), and (7) case numbers with high vasohibin expression and survival outcomes.

Statistical methods

The free downloadable software EZR was used to calculate all the statistical analyses (Kanda 2013). All reported P values were two-sided, with P < 0.05 regarded as being statistically significant. The odds ratio (OR) or hazard ratio (HR) and the 95% confidence interval (CI) were measured using fixed-effects or random-effects models. Publication bias was assessed using funnel plots.

Results

Characteristics of included studies

The flowchart in Fig. 1 shows the literature retrieval and selection process. In a search of Google Scholar and PubMed, we initially collected a total of 167 studies; however, 151 of them were excluded after screening the titles and abstracts. After a further review of the remaining studies, 5 studies were excluded because they involved animal research or were not relevant to the current analysis. Eventually, 10 studies (9 studies on VASH1, and 3 studies on VASH2 including 2 duplicates) were identified as meeting our inclusion criteria (Wang et al. 2012; Yan et al. 2014; Kitajima et al. 2014; Murakami et al. 2014; Liu et al. 2015; Kim et al. 2015; Shen et al. 2016; Ma et al. 2017; Ninomiya et al. 2018; Hara et al. 2020). Detailed information on these studies is shown in Tables 1 and 2.

Relationship between clinicopathological parameters and VASH1 expression

A total of 9 studies on VASH1 involving 1,574 patients were analyzed; 2 on esophageal cancer, 2 on gastric cancer,

3 on colorectal cancer, and 2 on hepatocellular carcinoma. After referring to each of the studies, "VASH1-positive" was defined as VASH1-positive or high VASH1 expression in the text, and "VASH1 negative" was defined as VASH1-negative or low VASH1 expression in the text (Table 3). VASH1 expression was associated with the tumor-node-metastasis (TNM) stage (OR 2.05, 95% CI 1.24-3.40), lymph node metastasis (OR 1.79, 95% CI 1.24-2.58), lymphatic invasion (OR 1.95, 95% CI 1.41-2.68), and venous invasion (OR 2.49, 95% CI 1.60-3.88), and poor clinical outcomes were associated with high VASH1 expression (Fig. 2). VASH1 expression was associated with a significantly shorter overall survival (OS) (HR 1.69 95% CI 1.25-2.29) and disease-free survival (DFS) (HR 2.01, 95% CI 1.28-3.15).

Relationship between clinicopathological parameters and VASH2 expression

A total of 3 studies on VASH2 involving 469 patients were analyzed: 1 on esophageal cancer, 1 on gastric cancer, and 1 on pancreatic carcinoma. After referring to each of the studies, "VASH2-positive" was defined as VASH2-positive or high VASH2 expression in the text, and "VASH2-negative" was defined as VASH2-negative or low VASH2 expression in the text (Table 4). VASH2 expression was associated with the TNM stage (OR 4.21, 95% CI 1.89-9.51) and venous invasion (OR 2.10, 95% CI 1.15-3.84), and poor clinical outcomes were associated with high VASH2 expression (Fig. 3). VASH2 expression was associated with a significantly shorter (HR 1.61, 95% CI 1.09-2.37).

Relationship between clinicopathological parameters and VASH expression according to cancer type

We analyzed publications on VASH1 according to cancer type (Table 5, Fig. 4). In hepatocellular carcinoma, VASH1 expression was associated with tumor size (OR 2.26, 95% CI 1.12-4.57), venous invasion (OR 4.72, 95% CI 2.47-9.0), OS (HR 2.20, 95% CI 1.52-3.17), and DFS (HR 1.89, 95% CI 1.12-3.21). In colorectal cancer, VASH1 expression was associated with tumor stage (OR 2.55, 95% CI 1.75-3.71). In gastric cancer, VASH1 expression was related to TNM stage (OR 2.47, 95% CI 1.13-5.37), lymph node metastasis (OR 2.0, 95% CI 1.11-3.62), and OS (HR 2.11, 95% CI 1.17-3.81). Among all the factors examined for each cancer type, high VASH1 levels were associated with poor clinical outcomes and prognosis. In esophageal cancer, no significant differences in clinicopathological factors were seen when patients were compared according to VASH1 expression. Because of the small number of publications on VASH2, an analysis according to cancer type was not possible.

Tests of heterogeneity

In the VASH1 meta-analysis, heterogeneity in the size, TNM stage, tumor stage, lymph node metastasis, distant

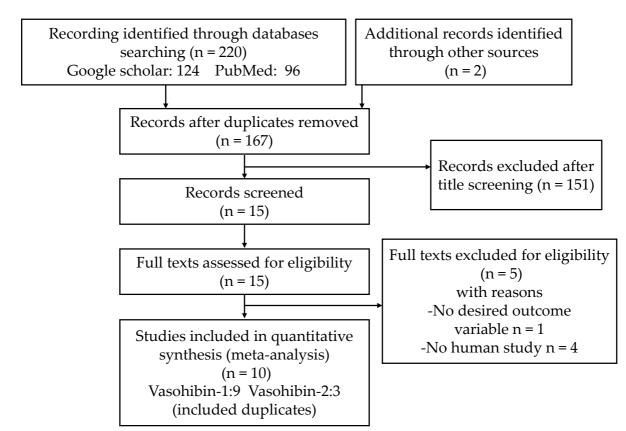


Fig. 1. Selection process for literature in meta-analysis.

References	Year	No. of patients	Tumor histology	Case nationality	Sample	Technique	VASH1 antibody	Tissue stained with VASH1 antibody	Cut-off value	Follow-up time
Wang et al.	2012	117	Hepatocellular carcinoma	China	Tissue	IHC	mouse monoclonal antibody (Abnova, Taipei, Taiwan)	Cytoplasm of tumor cells	Immunohisto-chemical score ≥ 6	5-62 months
Yan et al.	2014	132	Colorectal carcinoma	China	Tissue	IHC	polyclonal antibody (abcam, Cambridge, UK)	Cytoplasm and plasma membranes of tumor cells	Combined staining score ≥ 5	4-83 months
Kitajima et al.	2014	429	Colorectal carcinoma	Japan	Tissue	IHC	mouse monoclonal antibody (Abnova, Taipei, Taiwan)	Cytoplasm of tumor cells	IHC score ≥ 6	0.13-118.4 months
Murakami et al.	2014	181	Hepatocellular carcinoma	Japan	Tissue	IHC	VASH1 antibody (Watanabe et al. 2004)	Vascular endothelial cells of tumors	VASH1/CD34 > 0.459	36 months (median)
Liu et al.	2015	75	Colorectal carcinoma	China	Tissue	IHC	monoclonal antibody (Abnova, Taipei, Taiwan)	Cytoplasm of tumor cells	N.R.	N.R.
Shen et al.	2016	111	Gastric carcinoma	China	Tissue	IHC	polyclonal antibody (Santa Cruz Biotechnology, Europe)	Cytoplasm of tumor cells	Combined staining score ≥ 5	N.R.
Ma et al.	2017	110	Esophageal carcinoma	China	Tissue	IHC	VASH1 antibody (Abnova, Taipei, Taiwan)	Cytoplasm of tumor cells	Mean value > 4	N.R.
Ninomiya et al.	2018	209	Esophageal squamous cell carcinoma	Japan	Tissue	IHC	VASH1 antibody (Watanabe et al. 2004)	Vascular endothelial cells of tumors	Average MVD/VASH1	5 years
Hara et al.	2020	210	Gastric carcinoma	Japan	Tissue	IHC	VASH1 antibody (Watanabe et al. 2004)	Vascular endothelial cells of tumors	N.R.	5 years

VASH, vasohibin; IHC, immunohistochemistry; MVD, microvessels density; N.R., not reported.

Table 2. Characteristics of enrolled VASH2 studies.

Reference	Year	No. of patients	Tumor histology	Case nationality	Sample	Technique	VASH2 antibody	Tissue stained with VASH2 antibody	Cut-off value	Follow-up time
Kim et al.	2015	50	Pancreatic ductal adnocarcinoma	Korea	Tissue	IHC	Donated by Tohoku University, Japan	Cytoplasm of tumor cells	Combined staining score ≥ 4	5 years
Ninomiya et al.	2018	209	Esophageal squmous cell carcinoma	Japan	Tissue	IHC	VASH2 antibody (Shibuya et al. 2006)	Cytoplasm of tumor cells	Percentage of the stained area $\geq 51\%$ (staining score ≥ 2)	5 years
Hara et al.	2020	210	Gastric carcinoma	Japan	Tissue	IHC	VASH2 antibody (Shibuya et al. 2006)	Cytoplasm of tumor cells	Combined staining score ≥ 4	5 years

VASH, vasohibin; IHC, immunohistochemistry.

Table 3. Meta-analysis results of enrolled VASH1 studies.

	No. of studies	No. of VASH1 positive patients	No. of VASH1 negative patients	OR (95% CI)*	Р	HR (95% CI)	Р
1 Age	4	193	277	1.09 (0.74-1.61)	0.66		
2 Sex	9	731	843	1.06 (0.83-1.35)	0.63		
3 Size of tumor	3	138	270	1.13 (0.29-4.48)	0.3		
4 TNM stage	7	644	703	2.05 (1.24-3.4)	< 0.01		
5 Tumor stage	6	597	604	1.7 (0.94-3.09)	0.08		
6 Lymph node metastasis	6	593	573	1.79 (1.24-2.58)	< 0.01		
7 Distant metastasis	4	348	399	1.86 (0.64-5.44)	0.26		
8 Lymphatic invasion	3	449	399	1.95 (1.41-2.68)	< 0.01		
9 Venous invasion	5	545	601	2.49 (1.6-3.88)	< 0.01		
10 Overall survival	8	693	806			1.69 (1.25-2.29)	< 0.01
11 Disease free survival	3	202	305			2.01 (1.28-3.15)	< 0.01

*Random effects models.

VASH, vasohibin; OR, odds ratio; CI, confidence interval; HR, hazard ratio; TNM stage, tumor-node-metastasis stage.

metastasis, venous invasion and OS were observed among the studies (Fig. 2). However, no heterogeneity was observed for age, sex, lymphatic invasion and DFS.

In the VASH2 meta-analysis, sex, TNM stage, tumor stage, lymph node metastasis and lymphatic invasion were heterogeneous (Fig. 3). However, heterogeneity was not observed for venous invasion and OS.

Evaluation of publication bias

Funnel plots to examine publication bias are shown in Figs. 5 and 6. Since the number of articles was less than 10 for both VASH1 and VASH2, the asymmetry investigation was not thought to provide valid data.

Discussion

This study was the first meta-analysis of articles to examine the clinical significance of VASH expression in gastroenterological cancers. In this meta-analysis, we found that a VASH1-positive status (high VASH1 expression) and a VASH2-positive status (high VASH2 expression) in the tumor tissues of gastroenterological cancers were both associated with poor clinical outcomes.

VASH1 is mainly expressed in ECs in the termination zone to halt angiogenesis (Watanabe et al. 2004). Because VASH1 is an angiogenesis inhibitor, a high tumor expression level of VASH1 would be expected to be associated with a better prognosis. However, most studies on breast cancer (Tamaki et al. 2009), urothelial carcinoma (Miyazaki et al. 2012), prostate cancer (Kosaka et al. 2013), non-small cell lung cancer (Zhang et al. 2014), renal cell carcinoma (Mikami et al. 2017), and head and neck squamous cell carcinoma (Torii et al. 2017) have shown that an increased intensity of VASH1 immunostaining in the tumor vessels was associated with poor clinical outcomes. Similarly, in this meta-analysis of 1,574 gastroenterological cancers, a high VASH1 expression was associated with high malignancy and poor clinical outcomes. This implies that tumors with a higher angiogenic ability produce more VASH1. The expression of VASH1 seems to reflect the response of the ECs to angiogenic stimulation. In two articles that reported conflicting results, in which a high VASH1 expression was associated with a better prognosis, immunohistochemical staining showed that VASH1 was positive in the tumor cells, and not in ECs (Liu et al. 2015; Ma et al. 2017). On the other hand, four other papers reported that high VASH1 expression in tumor cells, as shown using immunohistochemical staining, was associated with poor clinical outcomes (Wang et al. 2012; Yan et al. 2014; Kitajima et al. 2014; Shen et al. 2016). The different antibodies used for immunohistochemical staining in each arti-

A Age≧ 60 Study A	VASH1 positive Age ≥ 60 Total Ag	VASH1 negative ge ≧ 60 Total	Odds Ratio	Weight OR 95%-Cl (fixed) (r.	Weight	B Sex Study	VASH1 positive Male Total I	VASH1 negative Male Total	Odds Ratio	Weight Weight OR 95%-Cl (fixed) (random)
Wang et al. 2012 Yan et al. 2014 Shen et al. 2016 Ma et al. 2017 Fixed effect model Random effects model Heterogeneity: $I^2 = 0\%$, $\tau^2 =$	15 45 44 62 25 44 16 42 193	20 72 49 70 40 67 – 23 68 277		1.30 [0.58; 2.91] 21.3% 1.05 [0.50; 2.22] 27.7% 0.89 [0.41; 1.92] 28.4% 1.20 [0.54; 2.68] 22.6% 1.09 [0.74; 1.61] 100.0% 1.09 [0.74; 1.61] -	23.4% 27.1% 25.6% 23.8% 	Wang et al. 2012 Yan et al. 2014 Kitajima et al. 2014 Murakami et al. 2014 Liu et al. 2015 Shen et al. 2015 Ma et al. 2017 Ninomiya et al. 2018 Hara et al. 2020	40 45 37 62 117 204 38 51 23 38 30 44 27 42 91 106 99 139	63 72 45 70 131 225 100 130 25 37 51 67 28 68 81 103 49 71		1.14 [0.36; 3.66] 3.6% 4.2% 0.82 [0.41; 1.66] 11.3% 10.7% 0.96 [0.66; 1.42] 35.3% 29.3% 0.88 [0.41; 1.86] 9.5% 9.6% 0.74 [0.29; 1.90] 6.6% 6.2% 0.74 [0.29; 1.90] 8.5% 7.7% 2.57 [1.65; 6.66] 5.1% 8.6% 1.56 [0.60; 3.07] 12.4% 13.4%
						Fixed effect model Random effects model Heterogeneity: $J^2 = 10\%$, τ^2	731 = 0.0144, <i>p</i> = 0.35	843 0.2	0.5 1 2 5	1.06 [0.85; 1.32] 100.0% - 1.06 [0.83; 1.35] - 100.0%
C Size ≥ 50mm Study 2 Wang et al. 2012 Murakami et al. 2014 Ma et al. 2017 Fixed offect model Random effects model Random ef	≥50mm ≥5 23 45 27 51 12 42 138	VASH1 negative ize Total Omm 29 72 34 130 40 68 270	Odds Ratio	3.18 [1.62; 6.24] 21.6% 0.28 [0.12; 0.64] 52.3% 1.24 [0.82; 1.86] 100.0%	Weight	D TNM stage Study Yan et al. 2014 Kitajima et al. 2014 Murakami et al. 2014 Liu et al. 2015 Shen et al. 2016 Ninomiya et al. 2018 Hara et al. 2020	VASH1 positive stage Total 3 or 4 3 d6 62 119 204 14 51 10 38 36 44 56 106 39 139	VASH1 negative stage Total 3 or 4 27 70 82 225 10 130 21 37 36 67 31 103 13 71	Odds Ratio	Weight Weight Weight OR 95%-CI (fixed) (random) 2.21 [1.10; 4.43] 11.2% 14.7% 2.44 [1.65; 3.60] 34.1% 18.2% -4.54 [1.66; 11.07] 4.3% 11.6% -3.88 [1.57; 9.57] 5.4% 11.6% -3.68 [1.63; 3.63] 15.6% 12.2% -1.74 [0.68] 3.53] 15.6% 14.6%
		0.2	2 0.5 1 2 5			Fixed effect model Random effects model Heterogeneity: / ² = 74%, τ ²	644	703	0.5 1 2	2.16 [1.71; 2.73] 100.0% 2.05 [1.24; 3.40] 100.0%
E Tumor stage Study T Yan et al. 2014 Shen et al. 2014 Shen et al. 2017 Nicomiya et al. 2018 Hara et al. 2017 Nicomiya et al. 2018 Here at al. 2020 Fixed effect model Heterogeneity: I ² = 78%, x ² =	60 62 119 204 36 44 14 42 52 106 59 139 597	VASH1 negative 3 or 4 Total 60 70 82 225 36 67 38 68 35 103 28 71 604 0.	Odds Ratio	OR Weight 95%-CI (fixed) 5.00 [1.05; 23.79] 1.9% 2.44 [1.65; 3.00] 33.1% 3.88 [1.57; 9.57] 5.3% 0.39 [0.18; 0.88] 19.7% 1.13 [0.63; 2.03] 21.7% 1.77 [1.39; 2.26] 100.0% 1.70 1.70 [0.94; 3.09] -	Weight (random) 9.0% 21.2% 15.1% 16.4% 19.3% 19.0% - 100.0%	F Lymph node metastasis Study Yan et al. 2014 Kitajima et al. 2014 Liu et al. 2015 Shen et al. 2015 Hara et al. 2020 Fixed effect model Random effects mode Heterogeneity: 7 ² = 49%, LIWI : Lymph node me	$e^2 = 0.0968, p = 0.0968$	26 70 76 225 15 37 40 67 60 103 26 71 573	Odds Ratio	Weight OR Weight 95%-CI (fixed) (random) 2.05 [1.02; 4.12] 11.4% 15.7% 2.12 [1.44; 3.13] 36.0% 25.7% 0.46 [0.17; 1.23] 12.0% 9.3% 2.10 [1.7; 1.23] 12.0% 9.4% 2.10 [1.7; 7.7] 16.1% 18.8% 1.61 [0.90; 2.69] 18.5% 18.6% 1.67 [1.47; 2.38] 100.0% 1.79 [1.24; 2.58] - 100.0%
G Distant metastaals Study Yan et al. 2014 Kitajima et al. 2014 Liu et al. 2015 Shen et al. 2016 Fixed effect model Random effects model Random effects model	12 62 40 204 1 38 11 44 348	VASH negative M+ Total 4 70 19 225 9 37 6 67 399	Odds Ratio	Weight OR 95%-CI (fitzed) (Weight random) 25.2% 33.0% 15.0% 26.7%	H Lymphatic invasion Study Kitajima et al. 2014 Ninomiya et al. 2018 Hara et al. 2020 Fixed effect model Random offects model Heterogenety: /* = 0%, e**	VASH1 positive ly + Total 166 204 87 106 106 139 449 0, p = 0.58	VASH1 negative ly+ Total 157 225 77 103 40 71 399	Odds Ratio	Weight 95%-CI (fixed) (random) 1.89 [120; 2.98] 51.1% 49.7% 1.56 [0.79; 3.01] 25.7% 23.0% 2.49 [1.35; 4.58] 23.1% 27.4% 1.94 [1.41; 2.67] 100.0% - 1.95 [1.41; 2.68] - 100.0%
DM : Distant metastasis I Venous invasion Study Wang et al. 2012 Kitajima et al. 2014 Murakami et al. 2014 Murakami et al. 2018 Hara et al. 2020 Fixed effect model Heterogeneity: I ² = 65%, r ² v : venous invasion	VASH1 positive V + Total 26 45 121 204 35 51 79 106 81 139 545 ² = 0.1614, <i>p</i> = 0.0	VASH1 negative V + Total 21 72 95 225 33 130 65 103 32 71 601 2 7 0.1	0.1 0.51 2 10 Odds Ratio	OR 95%-CI (fixe) 3.32 [1.52; 7.25] 8.1' 1.99 [1.36; 2.93] 43.8 -6.43 [3.16; 13.09] 7.0 1.71 [0.95; 3.09] 20.0 1.70 [0.96; 3.03] 21.1 2.29 [1.79; 2.93] 100.0	% 16.0% % 25.6% % 17.5% % 20.3% % 20.7%	Wang et al. 2012 Yan et al. 2014 Kitajima et al. 2014 Murakami et al. 2014 Liu et al. 2015 Shen et al. 2016 Ma et al. 2017 Ninomiya et al. 2018		33 44 166 — 15 199 22 — <u>■</u> 17 51 — -	2.53 1.05 2.16 2.80 0.67 1.60 1.53	
K Disease free survivals Study	TE seTE	Haza	ard Ratio HR					0.2 0.3	1 2 5	
Wang et al. 2012 Murakami et al. 2014 Ninomiya et al. 2018 Fixed effect model Random effects mode Heterogeneity: J ² = 51%,	0.94 0.2502 0.40 0.1702 1.11 0.5509 el $\tau^2 = 0.0785, p =$	0.13	1.49 3.03	[1.07; 2.08] 64.2% [1.03; 8.92] 6.1% [1.40; 2.39] 100.0%	37.3% 48.9% 13.8% 00.0%					
Fig. 2.	Forrest		VASH1 studies							

Fig. 2. Forrest plots of VASH1 studies.

(A) Age, (B) sex, (C) size, (D) tumor-node-metastasis (TNM) stage, (E) tumor stage, (F) lymph node metastasis, (G) distant metastasis, (H) lymphatic invasion, (I) venous invasion, (J) overall survival rates, and (K) disease free survival rates.

VASH, vasohibin; OR, odds ratio; HR, hazard ratio; CI, confidence interval; LNM, lymph node metastasis; DM, distant metastasis; ly, lymphatic invasion; v, venous invasion.

cle may have affected the heterogeneity of the meta-analysis results. In the future, a larger number of cases will need to be evaluated using the same type of antibodies. VASH2 has been found to be expressed in many tumors and is associated with angiogenesis and tumor growth (Kimura et al. 2009). VASH2 is a pro-angiogenic

Table 4. Meta-analysis results of enrolled VASH2 studies.

	No. of studies	No. of VASH2 positive patients	No. of VASH2 negative patients	OR (95% CI)*	Р	HR (95% CI)	Р
1 Sex	3	178	291	0.84 (0.32-2.22)	0.72		
2 TNM stage	3	178	291	4.21 (1.86-9.51)	< 0.01		
3 Tumor stage	3	178	291	1.31 (0.53-3.25)	0.56		
4 Lymph node metastasis	3	178	291	2.46 (0.57-10.61)	0.23		
5 Lymphatic invasion	2	156	263	1.93 (0.62-5.95)	0.25		
6 Venous invasion	2	156	263	2.10 (1.15-3.84)	0.02		
7 Overall survival	3	178	291			1.61 (1.09-2.37)	0.02

*Random effects models.

VASH, vasohibin; OR, odds ratio; CI, confidence interval; HR, hazard ratio; TNM stage, tumor-node-metastasis stage .

А							В				
Sex	VASH2 positive	VASH					TNM stage	VASH2 positive	VASH2 negative		
Study		Male Tot				Weight random)	Study		age Total	Odds Ratio	Weight Weight OR 95%-Cl (fixed) (random)
Kim et al. 2015 Ninomiya et al. 2018 Hara et al. 2020	16 22 30 48 77 108	16 2 134 16 71 10	1 — 🔳 👘	2.00 [0.60; 6.64] 0.34 [0.16; 0.69] 1.08 [0.60; 1.96]	8.0% 48.2% 43.8%	26.4% 35.7% 38.0%	Kim et al. 2015 Ninomiya et al. 2018 Hara et al. 2020	18 22 27 48 42 108	10 28 60 161 10 102		8.10 [2.14; 30.65] 8.0% 22.3% 2.16 [1.13; 4.16] 60.5% 40.5% 5.85 [2.74; 12.50] 31.5% 37.2%
Fixed effect model Random effects model Heterogeneity: I^2 = 78%, τ^2 =	178 0.5548, <i>p</i> = 0.01	29		0.80 [0.52; 1.22] 0.84 [0.32; 2.22] 5	100.0% 	_ 100.0%	Fixed effect model Random effects mode Heterogeneity: $l^2 = 63\%$,		291	0.1 0.5 1 2 10	3.80 [2.42; 5.98] 100.0% - 4.21 [1.86; 9.51] - 100.0%
С							D			0.1 0.5 1 2 10	
Tumor stage	VASH2	VASH2					Lymph node metastasis	VASH2 positive	VASH2 negative		Weight Weight
	positive 3 or 4 Total T	negativ				Weight random)	Study	LNM + Total LNM	+ Total	Odds Ratio	OR 95%-CI (fixed) (random)
Study T : Kim et al. 2015 Ninomiya et al. 2018 Hara et al. 2020	19 22 26 48 39 108	20 2 61 16 48 10		2.53 [0.58; 11.00]	5.1% 27.4%	21.3% 38.3% 40.5%	Kim et al. 2015 Ninomiya et al. 2018 Hara et al. 2020		9 28 102 161 50 102	-	- 21.11 [4.03; 110.57] 1.7% 26.3% 1.95 [0.92; 4.10] 25.3% 36.0% 0.69 [0.40; 1.19] 73.0% 37.7%
Fixed effect model Random effects model Heterogeneity: $I^2 = 75\%$, $\tau^2 =$	178 0.4544, <i>p</i> = 0.02	29	0.1 0.5 1 2	1.09 [0.73; 1.62] 1.31 [0.53; 3.25]	100.0% -	_ 100.0%	Fixed effect model Random effects model Heterogeneity: / ² = 88%, τ LNM : lymph node metasta:	² = 1.3956, <i>p</i> < 0.01	291	0.1 1 10 10	1.35 [0.91; 2.01] 100.0% 2.46 [0.57; 10.61] 100.0%
E							_				
Lymphatic invasion	VASH2 positive	VASH negati			Weight	Weight	F	VASH2	VASH2		
Study	ly + Total	ly + Tot	al Odds Ratio			(random)	Venous invasion	positive	negative		Weight Weight
Ninomiya et al. 2018 Hara et al. 2020	38 48 88 108	126 1 58 1		1.06 [0.48; 2.33]		47.7% 52.3%	Study	v + Total	v + Total	Odds Ratio	OR 95%-CI (fixed) (random)
Fixed effect model	156	2				52.3%	Ninomiya et al. 2018 Hara et al. 2020	36 48 71 108	108 161 42 102		1.47 [0.71; 3.06] 45.6% 42.5% - 2.74 [1.57; 4.80] 54.4% 57.5%
Random effects model Heterogeneity: $l^2 = 80\%$, $\tau^2 =$				2.15 [1.32; 3.50] 1.93 [0.62; 5.95]			Fixed effect model Random effects mode		263		2.16 [1.38; 3.38] 100.0% - - 2.10 [1.15; 3.84] - 100.0%
G							Heterogeneity: / ² = 43%, v : venous invasion	$\tau^2 = 0.0829, p = 0.19$		0.5 1 2	
Overall survivals				We	aiaht	Weight					
Study	TE seTE	E	Hazard Ratio		ixed) (ra						
Kim et al. 2015 Ninomiya et al. 2018 Hara et al. 2020	-0.18 0.5736 0.69 0.2315 0.35 0.3120	5		2.00 [1.27; 3.14] 58	9.5% 8.4% 2.1%	11.4% 54.6% 34.0%					
Fixed effect model Random effects model Heterogeneity: / ² = 14%, τ ²			.5 1 2	1.65 [1.16; 2.33] 100 1.61 [1.09; 2.37]		 100.0%					

Fig. 3. Forrest plots of VASH2 studies.

(A) Sex, (B) tumor-node-metastasis (TNM) stage, (C) tumor stage, (D) lymph node metastasis, (E) lymphatic invasion, (F) venous invasion, and (G) overall survival rates.

VASH, vasohibin; OR, odds ratio; HR, hazard ratio; CI, confidence interval; LNM, lymph node metastasis; ly, lymphatic invasion; v, venous invasion.

factor that is mainly expressed in cancer cells (Shibuya et al. 2006). In this study, we performed a meta-analysis of 469 cases of gastroenterological cancer and found that high VASH2 expression was associated with poor clinical outcomes and poor prognosis. In malignant tumors other than gastroenterological cancer, high tissue expression levels of VASH2 have been reported to be a poor prognostic factor in serous ovarian cancer (Takahashi et al. 2012). VASH2 has been reported to be involved in the epithelial-mesenchymal transition (EMT) by regulating TGF- β signaling (Norita et al. 2017). In addition, VASH2 has been suggested to play an important role in tumor progression via the stromal activation of cancer-associated fibroblasts (CAF) (Suzuki et al.

2017). Thus, VASH2 likely plays a variety of roles in the tumor microenvironment in addition to its pro-angiogenic activity.

In the analysis of VASH1 expression according to cancer types, high VASH1 levels were associated with poor clinical outcomes and a poor prognosis in patients with hepatocellular carcinoma, colorectal carcinoma, or gastric carcinoma. The present analysis suggested that high VASH1 levels may predict a poor prognosis in patients with each of the above-mentioned types of cancer. On the other hand, in esophageal cancer, no significant differences in clinicopathological factors were seen when patients were compared according to VASH1 expression. In two reports

Table 5. Meta-analysis results of enrolled VASH1 studies analyzed for each cancer type.

Hepatocellular carcinoma							
	No. of studies	No. of VASH1 positive patients	No. of VASH1 negative patients	OR (95% CI)*	Р	HR (95% CI)*	Р
1 Size of tumor	2	183	138	2.26 (1.12-4.57)	0.02		
2 Venous invasion	2	183	138	4.72 (2.47-9.0)	< 0.01		
3 Overall survival	2	183	138			2.20 (1.52-3.17)	< 0.01
4 Disease free survival	2	183	138			1.89 (1.12-3.21)	< 0.01
Colorectal carcinoma							
	No. of studies	No. of VASH1 positive patients	No. of VASH1 negative patients	OR (95% CI)*	Р	HR (95% CI)*	Р
1 TNM stage	3	304	332	1.23 (0.40-3.75)	0.71		
2 Tumor stage	2	266	295	2.55 (1.75-3.71)	< 0.01		
3 Lymph node metastasis	3	304	332	1.41 (0.65-3.06)	0.39		
4 Distant metastasis	3	304	332	1.31 (0.26-6.48)	0.74		
5 Overall survival	2	266	295			1.60 (0.68-3.78)	0.28
Gastric carcinoma							
	No. of studies	No. of VASH1 positive patients	No. of VASH1 negative patients	OR (95% CI)*	Р	HR (95% CI)*	Р
1 TNM stage	2	183	138	2.47 (1.13-5.37)	0.02		
2 Tumor stage	2	183	138	1.99 (0.60-6.63)	0.08		
3 Lymph node metastasis	2	183	138	2.0 (1.11-3.62)	0.02		
4 Overall survival	2	183	138			2.11 (1.17-3.81)	< 0.01
Esophageal carcinoma							
	No. of studies	No. of VASH1 positive patients	No. of VASH1 negative patients	OR (95% CI)*	Р	HR (95% CI)*	Р
1 Tumor stage	2	148	171	0.88 (0.19-4.06)	0.87		
2 Overall survival	2	148	171	. ,		1.08 (0.46-2.53)	0.85

*Random effects models.

VASH, vasohibin; OR, oddds ratio; CI, confidence interval; HR, hazard ratio; TNM stage, tumor-node-metastasis stage.

on esophageal cancer, Ma et al. (2017) used a VASH1 antibody that stained the cytoplasm, while Ninomiya et al. (2018) used a VASH1 antibody that stained ECs. This difference in antibodies may have led to conflicting results, and a direct comparison of the two studies might be difficult. An analysis of VASH2 expression according to cancer types could not be performed because of the small number of publications. Because of the relatively small number of cases and accompanying lack of statistical accuracy, the further accumulation of cases is needed.

In recent years, the diverse roles of vasohibin in the tumor microenvironment have attracted much attention (Norita et al. 2017; Suzuki et al. 2017; Sato 2018). Although VASH1 was discovered as an angiogenesis inhibitor, it also reportedly promotes stress tolerance in vascular ECs and is involved in the maintenance of vascular homeo-

stasis to prevent pathological angiogenesis (Sato 2018). In cancer tissues with immature tumor blood vessels, hypoxia is maintained because of circulatory failure (Pugh and Ratcliffe 2003). Hypoxia increases the invasive and metastatic potential of cancer, and immature tumor blood vessels provide a pathway for cancer cells to invade blood vessels. The maturation of tumor blood vessels is thought to generate hypoxia in cancer tissues, improve the tumor reachability of chemotherapeutic agents, increase the sensitivity to radiation therapy, and increase the reachability of immune cells (Kashiwagi et al. 2008; Hosaka et al. 2009). VASH1 is considered to promote the maturation of tumor blood vessels and to inhibit cancer growth and metastasis (Hosaka et al. 2009). On the other hand, VASH2 has also been reported to play an important role in tumor growth via stromal activation, such as EMT and CAF proliferation (Norita

A		В	
Hepatocellular carcinoma VASH 1 VASH1 Size≧50mm positive negative	Weight Weight	Hepatocellular carcinoma VASH 1 VASH 1 Venous invasion positive negative Weight W	
size size ≧50mm Total ≧50mm Total	Odds Ratio OR 95%-CI (fixed) (random)	V + Total V + Total Odds Ratio OR 95%-Cl (fixed) (ran	ndom)
Wang et al. 2012 23 45 29 72 Murakami et al. 2014 27 51 34 130	1.55 [0.73; 3.28] 54.7% 47.3% 3.18 [1.62; 6.24] 45.3% 52.7%		46.9% 53.1%
Fixed effect model 96 202 Random effects model	2.29 [1.39; 3.77] 100.0% - 2.26 [1.12; 4.57] - 100.0%	Fixed effect model 96 202 4.75 [2.82; 8.02] 100.0% Random effects model 4.72 [2.47; 9.00]	 00.0%
С		D	
Hepatocellular carcinoma Overall survivals TE seTE Haz	Weight Weight ard Ratio HR 95%-CI (fixed) (random)	Hepatocellurlar carcinoma Disease free survivals TE seTE Hazard Ratio HR 95%-CI (fixed) (ra	Weight Indom)
Wang et al. 2012 0.80 0.2583 Murakami et al. 2014 0.77 0.2705	2.23 [1.34; 3.70] 52.3% 52.3% 		44.3% 55.7%
Fixed effect model Random effects model Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 0.93$ 0.5	2.20 [1.52; 3.17] 100.0% 2.20 [1.52; 3.17] 100.0%	Fixed effect model Random effects model Heterogeneity: $l^2 = 69\%$, $\tau^2 = 0.1007$, $p = 0.07$ 0.5 1 2 1.77 [1.34; 2.33] 100.0% 1.89 [1.12; 3.21] - 1	 100.0%
E		F	
Colorectal carcinoma VASH1 VASH 1 Tumor stage positive negative T3 or 4 Total T3 or 4 Total	Weight Weight Odds Ratio OR 95%-Cl (fixed) (random)	Gastric carcinoma VASH1 VASH1 TNM stage positive negative Weight W stage Total stage Total Odds Ratio OR 95%-CI (fixed) (ran	
Yan et al. 2014 60 62 60 70	5.00 [1.05; 23.79] 5.3% 5.9%	3 or 4 3 or 4	
Kitajima et al. 2014 119 204 82 225	2.44 [1.65; 3.60] 94.7% 94.1%		43.5% 56.5%
Fixed effect model266295Random effects model1Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\rho = 0.38$ 0	2.58 [1.77; 3.75] 100.0% - 2.55 [1.75; 3.71] - 100.0%	Fixed effect model 183 138 2.37 [1.36; 4.12] 100.0% Random effects model 2.47 [1.13; 5.37] - 10 Heterogenety; 7 = 47%, cf = 0.1493, p = 0.17	 00.0%
G	1 0.5 1 2 10	0.2 0.5 1 2 5 H	
Gastric carcinoma VASH1 VASH1 Lymph node metastasis positive negative LNM + Total LNM + Total	Weight Weight Odds Ratio OR 95%-Cl (fixed) (random)	Gastric carcinoma	
Shen et al. 2016 36 44 40 67 Hara et al. 2020 67 139 26 71	3.04 [1.22; 7.53] 24.4% 34.4% 1.61 [0.90; 2.89] 75.6% 65.6%	Shen et al. 2016 1.03 0.2999	53.1% 46.9%
Fixed effect model 183 138 Random effects model 183 138 Heterogeneity: $I^2 = 24\%$, $\tau^2 = 0.0493$, $p = 0.25$ 10 O. 0.	1.96 [1.20; 3.19] 100.0% - 2.00 [1.11; 3.62] - 100.0% 2 0.5 1 2 5	Fixed effect model Random effects model Heterogeneity: $l^2 = 45\%$, $\tau^2 = 0.0819$, $p = \overline{0.18}$ 0.2 0.5 1 2 5	 100.0%

Fig. 4. Forrest plots of VASH1 studies analyzed for each cancer type.

(A) Hepatocellular carcinoma, tumor size, (B) hepatocellular carcinoma, venous invasion, (C) hepatocellular carcinoma, overall survival rates, (D) hepatocellular carcinoma, disease free survival rates, (E) colorectal cancer, tumor stage, (F) gastric cancer, TNM stage, (G) gastric cancer, lymph node metastasis, and (H) gastric cancer, overall survival rate. VASH, vasohibin; OR, odds ratio; HR, hazard ratio; v, venous invasion; LNM, lymph node metastasis.

et al. 2017; Suzuki et al. 2017). These findings indicate that VASH2 has not only a pro-angiogenic activity, but also plays diverse roles in the tumor microenvironment and may be a new molecular target for preventing tumor EMT and inhibiting CAF activation.

In the context of the diverse roles of vasohibin beyond angiogenesis, research is underway to apply vasohibin clinically and to develop molecularly targeted drugs. In VASH1 knockout mice, angiogenesis is not terminated, and the blood vessels remain in an immature state with poor EC coverage; in VASH2 knockout mice, on the other hand, angiogenesis is markedly attenuated, especially at the site of sprouting (Kimura et al. 2009). In addition, when cancer cells are transplanted into VASH1 knockout mice, tumor growth and metastasis are enhanced; when VASH1 is exogenously applied to such lesions, however, immature tumor blood vessels lacking ECs are converted into mature blood vessels coated with ECs, and tumor growth and metastasis are effectively suppressed. Reportedly, the knockout of VASH2 expression in cancer cells markedly suppresses tumor growth (Takahashi et al. 2012). Monoclonal antibodies against human VASH2 have been developed, and an anti-tumor activity comparable to that of bevacizumab, which inhibits VEGF and is widely used clinically, was confirmed in a xenograft mouse model (Koyanagi et al. 2017). VEGF is required for the development and mainte-

nance of vascular endothelial cells, and VEGF knockout mice exhibit multiple organ failure due to vascular endothelial cell dysfunction (Ferrara et al. 1996; Carmeliet et al. 1996). This impairment of blood vessels is a side effect of VEGF inhibitors. On the other hand, VASH2 knockout mice are viable, suggesting that VASH2 antibody therapy may be safer than VEGF inhibitors with fewer adverse effects (Koyanagi et al. 2017). Curing gastroenterological cancer through non-surgical treatment remains difficult. The identification of therapeutic target molecules will be important for improving the prognosis of patients with gastroenterological cancer (Moehler et al. 2016; Jaiswal 2017). The findings of this meta-analysis, in which the expressions of VASH1 and VASH2 were shown to be prognostic factors, suggest the importance of the clinical application of VASH in gastroenterological cancer.

Reports which discussed the relationship between VASH1 and VASH2 have been limited. The VASH literature in the field of gastric cancer suggests a slight correlation between the expression levels of VASH1 and VASH2 in tumors (Hara et al. 2020). Further analysis of VASH1 and VASH2 expression levels in the same patients and an investigation of their relationships are needed.

This study has some limitations. First, the antibodies used for immunohistochemical staining differed among the studies that were surveyed, resulting in differences in tissue

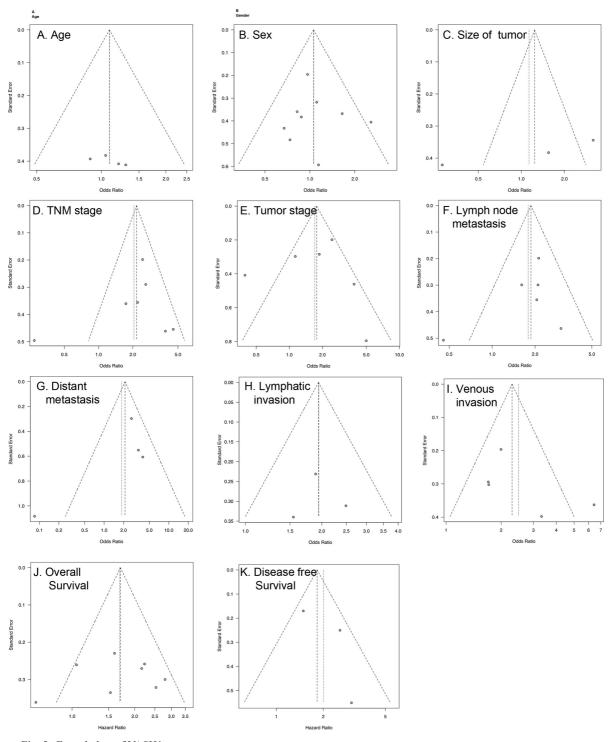


Fig. 5. Funnel plots of VASH1.

(A) Age, (B) sex, (C) size, (D) tumor-node-metastasis (TNM) stage, (E) tumor stage, (F) lymph node metastasis, (G) distant metastasis, (H) lymphatic invasion, (I) venous invasion, (J) overall survival rates, and (K) disease free survival rates.

staining. In addition, the evaluation and the setting of cutoff values for immunohistochemical staining were inconsistent. These points may have contributed to the heterogeneity of the findings. In addition, the number of articles on VASH1 and VASH2 was 9 and 3, respectively, which are both relatively small and do not allow for sufficient evaluation of the publication bias using funnel plots. In the future, large-scale studies are required.

In recent years, the usefulness of liquid biopsies using bodily fluids, such as blood, for the development of new biomarkers has been attracting attention. However, very few reports have analyzed the blood concentrations of

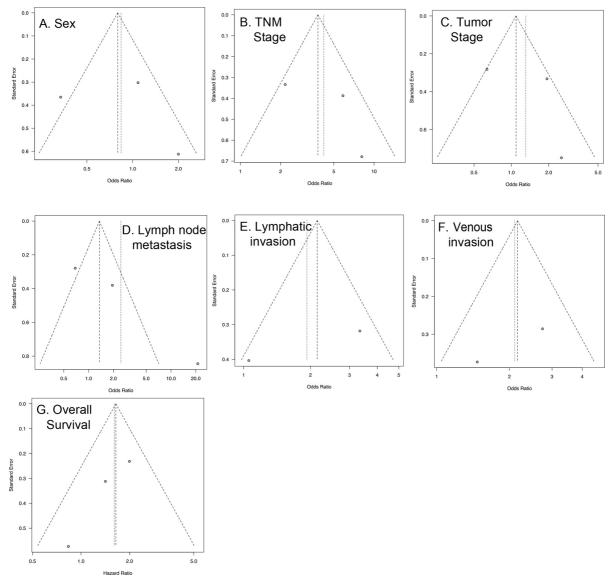


Fig. 6. Funnel plots of VASH2.

(A) Sex, (B) tumor-node metastasis (TNM) stage, (C) tumor stage, (D) lymph node metastasis, (E) lymphatic invasion, (F) venous invasion, and (G) overall survival rates.

VASH. We previously reported that the plasma VASH1 and VASH2 concentrations in esophageal cancer patients are useful as biomarkers (Yamamoto et al. 2020). To the best of our knowledge, this was the first report to analyze plasma VASH2 levels. The further analysis of plasma VASH levels in many patients with different types of cancer is anticipated.

In conclusion, this study demonstrated that VASH1 and VASH2 expressions were relevant to more aggressive clinicopathological parameters and were associated with a poor OS in patients with gastroenterological cancers.

Conflict of Interest

The authors declare no conflict of interest.

References

- Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., Declercq, C., Pawling, J., Moons, L., Collen, D., Risau, W., et al. (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. *Nature*, **380**, 435-439.
- Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., O'Shea, K.S., Powell-Braxton, L., Hillan, K.J. & Moore, M.W. (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. *Nature*, **380**, 439-442.
- Hara, H., Ozawa, S., Ninomiya, Y., Yamamoto, M., Ogimi, M., Nabeshima, K., Nakamura, K., Kajiwara, H., Nakamura, N. & Sato, Y. (2020) Prognostic significance of vasohibin-1 and vasohibin-2 immunohistochemical expression in gastric cancer. Surg. Today, 50, 1530-1543.
- Hosaka, T., Kimura, H., Heishi, T., Suzuki, Y., Miyashita, H., Ohta, H., Sonoda, H., Moriya, T., Suzuki, S., Kondo, T. & Sato, Y.

(2009) Vasohibin-1 expression in endothelium of tumor blood vessels regulates angiogenesis. *Am. J. Pathol.*, **175**, 430-439.

- Jaiswal V. (2017) Multi target drug design for gastrointestinal cancer. *Ann. Oncol.*, **28**, iii18-iii19.
- Kanda, Y. (2013) Investigation of the freely available easy-to-use software 'EZR' for medical statistics. *Bone Marrow Transplant.*, 48, 452-458.
- Kashiwagi, S., Tsukada, K., Xu, L., Miyazaki, J., Kozin, S.V., Tyrrell, J.A., Sessa, W.C., Gerweck, L.E., Jain, R.K. & Fukumura, D. (2008) Perivascular nitric oxide gradients normalize tumor vasculature. *Nat. Med.*, 14, 255-257.
- Kim, J.C., Kim, K.T., Park, J.T., Kim, H.J., Sato, Y. & Kim, H.S. (2015) Expression of vasohibin-2 in pancreatic ductal adenocarcinoma promotes tumor progression and is associated with a poor clinical outcome. *Hepatogastroenterology*, 62, 251-256.
- Kimura, H., Miyashita, H., Suzuki, Y., Kobayashi, M., Watanabe, K., Sonoda, H., Ohta, H., Fujiwara, T., Shimosegawa, T. & Sato, Y. (2009) Distinctive localization and opposed roles of vasohibin-1 and vasohibin-2 in the regulation of angiogenesis. *Blood*, **113**, 4810-4818.
- Kitajima, T., Toiyama, Y., Tanaka, K., Saigusa, S., Kobayashi, M., Inoue, Y., Mohri, Y. & Kusunoki, M. (2014) Vasohibin-1 increases the malignant potential of colorectal cancer and is a biomarker of poor prognosis. *Anticancer Res.*, 34, 5321-5329.
- Kosaka, T., Miyazaki, Y., Miyajima, A., Mikami, S., Hayashi, Y., Tanaka, N., Nagata, H., Kikuchi, E., Nakagawa, K., Okada, Y., Sato, Y. & Oya, M. (2013) The prognostic significance of vasohibin-1 expression in patients with prostate cancer. *Br. J. Cancer*, **108**, 2123-2129.
- Koyanagi, T., Suzuki, Y., Komori, K., Saga, Y., Matsubara, S., Fujiwara, H. & Sato, Y. (2017) Targeting human vasohibin-2 by a neutralizing monoclonal antibody for anti-cancer treatment. *Cancer Sci.*, **108**, 512-519.
- Liu, S., Han, B., Zhang, Q., Dou, J., Wang, F., Lin, W., Sun, Y. & Peng, G. (2015) Vasohibin-1 suppresses colon cancer. *Oncotarget*, 6, 7880-7898.
- Ma, D., Li, J., Wang, J., Sun, Z. & Wang, K. (2017) Clinical implications of vasohibin-1 in esophageal carcinoma cells: inhibition of cell growth and migration. *Mol. Med. Rep.*, 16, 1479-1485.
- Mikami, S., Oya, M., Kosaka, T., Mizuno, R., Miyazaki, Y., Sato, Y. & Okada, Y. (2017) Increased vasohibin-1 expression is associated with metastasis and poor prognosis of renal cell carcinoma patients. *Lab. Invest.*, 97, 854-862.
- Miyazaki, Y., Kosaka, T., Mikami, S., Kikuchi, E., Tanaka, N., Maeda, T., Ishida, M., Miyajima, A., Nakagawa, K., Okada, Y., Sato, Y. & Oya, M. (2012) The prognostic significance of vasohibin-1 expression in patients with upper urinary tract urothelial carcinoma. *Clin. Cancer Res.*, 18, 4145-4153.
- Moehler, M., Delic, M., Goepfert, K., Aust, D., Grabsch, H.I., Halama, N., Heinrich, B., Julie, C., Lordick, F., Lutz, M.P., Mauer, M., Alsina Maqueda, M., Schild, H., Schimanski, C.C., Wagner, A.D., et al. (2016) Immunotherapy in gastrointestinal cancer: recent results, current studies and future perspectives. *Eur. J. Cancer*, **59**, 160-170.
- Moher, D., Liberati, A., Tetzlaff, J. & Altman, D.G.; PRISMA Group (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Int. J. Surg.*, 8, 336-341.
- Murakami, K., Kasajima, A., Kawagishi, N., Sekiguchi, S., Fujishima, F., Watanabe, M., Sato, Y., Ohuchi, N. & Sasano, H. (2014) The prognostic significance of vasohibin 1-associated angiogenesis in patients with hepatocellular carcinoma. *Hum. Pathol.*, 45, 589-597.

- Ninomiya, Y., Ozawa, S., Oguma, J., Kazuno, A., Nitta, M., Kajiwara, H. & Sato, Y. (2018) Expression of vasohibin-1 and -2 predicts poor prognosis among patients with squamous cell carcinoma of the esophagus. *Oncol. Lett.*, 16, 5265-5274.
- Norita, R., Suzuki, Y., Furutani, Y., Takahashi, K., Yoshimatsu, Y., Podyma-Inoue, K.A., Watabe, T. & Sato, Y. (2017) Vasohibin-2 is required for epithelial-mesenchymal transition of ovarian cancer cells by modulating transforming growth factor-beta signaling. *Cancer Sci.*, **108**, 419-426.
- Pugh, C.W. & Ratcliffe, P.J. (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. *Nat. Med.*, 9, 677-684.
- Sato, Y. (2018) Double-face of vasohibin-1 for the maintenance of vascular homeostasis and healthy longevity. J. Atheroscler. Thromb., 25, 461-466.
- Shen, Z., Yan, Y., Ye, C., Wang, B., Jiang, K., Ye, Y., Mustonen, H., Puolakkainen, P. & Wang, S. (2016) The effect of Vasohibin-1 expression and tumor-associated macrophages on the angiogenesis in vitro and in vivo. *Tumour Biol.*, 37, 7267-7276.
- Shibuya, T., Watanabe, K., Yamashita, H., Shimizu, K., Miyashita, H., Abe, M., Moriya, T., Ohta, H., Sonoda, H., Shimosegawa, T., Tabayashi, K. & Sato, Y. (2006) Isolation and characterization of vasohibin-2 as a homologue of VEGF-inducible endothelium-derived angiogenesis inhibitor vasohibin. *Arterioscler: Thromb. Vasc. Biol.*, 26, 1051-1057.
- Suzuki, Y., Kitahara, S., Suematsu, T., Oshima, M. & Sato, Y. (2017) Requisite role of vasohibin-2 in spontaneous gastric cancer formation and accumulation of cancer-associated fibroblasts. *Cancer Sci.*, **108**, 2342-2351.
- Takahashi, Y., Koyanagi, T., Suzuki, Y., Saga, Y., Kanomata, N., Moriya, T., Suzuki, M. & Sato, Y. (2012) Vasohibin-2 expressed in human serous ovarian adenocarcinoma accelerates tumor growth by promoting angiogenesis. *Mol. Cancer Res.*, 10, 1135-1146.
- Tamaki, K., Moriya, T., Sato, Y., Ishida, T., Maruo, Y., Yoshinaga, K., Ohuchi, N. & Sasano, H. (2009) Vasohibin-1 in human breast carcinoma: a potential negative feedback regulator of angiogenesis. *Cancer Sci.*, **100**, 88-94.
- Torii, C., Hida, Y., Shindoh, M., Akiyama, K., Ohga, N., Maishi, N., Ohiro, Y., Ono, M., Totsuka, Y., Kitagawa, Y., Tei, K., Sato, Y. & Hida, K. (2017) Vasohibin-1 as a novel prognostic factor for head and neck squamous cell carcinoma. *Anticancer Res.*, 37, 1219-1225.
- Wang, Q., Tian, X., Zhang, C. & Wang, Q. (2012) Upregulation of vasohibin-1 expression with angiogenesis and poor prognosis of hepatocellular carcinoma after curative surgery. *Med. Oncol.*, 29, 2727-2736.
- Watanabe, K., Hasegawa, Y., Yamashita, H., Shimizu, K., Ding, Y., Abe, M., Ohta, H., Imagawa, K., Hojo, K., Maki, H., Sonoda, H. & Sato, Y. (2004) Vasohibin as an endothelium-derived negative feedback regulator of angiogenesis. *J. Clin. Invest.*, 114, 898-907.
- Yamamoto, M., Ozawa, S., Ninomiya, Y., Koyanagi, K., Oguma, J., Kazuno, A., Hara, H., Yatabe, K., Kajiwara, H., Nakamura, N. & Sato, Y. (2020) Plasma vasohibin-1 and vasohibin-2 are useful biomarkers in patients with esophageal squamous cell carcinoma. *Esophagus*, **17**, 289-297.
- Yan, Y., Shen, Z., Ye, Y., Jiang, K., Zhang, H., Shen, C., Mustonen, H., Puolakkainen, P. & Wang, S. (2014) A novel molecular marker of prognosis in colorectal cancer: vasohibin-1. *Med. Oncol.*, **31**, 816.
- Zhang, T., Yu, T.T., Zhang, D.M., Hou, X.M., Liu, X.J., Zhao, D. & Shan, L. (2014) Vasohibin-1 expression detected by immunohistochemistry correlates with prognosis in non-small cell lung cancer. *Med. Oncol.*, **31**, 963.