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In forensic medicine, fatal hypothermia diagnosis is not always easy because findings are not specific, 
especially if traumatized.  Post-mortem computed tomography (PMCT) is a useful adjunct to the cause-of-
death diagnosis and some qualitative image character analysis, such as diffuse hyperaeration with 
decreased vascularity or pulmonary emphysema, have also been utilized for fatal hypothermia.  However, it 
is challenging for inexperienced forensic pathologists to recognize the subtle differences of fatal 
hypothermia in PMCT images.  In this study, we developed a deep learning-based diagnosis system for 
fatal hypothermia and explored the possibility of being an alternative diagnostic for forensic pathologists.  
An in-house dataset of forensic autopsy proven samples was used for the development and performance 
evaluation of the deep learning system.  We used the area under the receiver operating characteristic curve 
(AUC) of the system for evaluation, and a human-expert comparable AUC value of 0.905, sensitivity of 
0.948, and specificity of 0.741 were achieved.  The experimental results clearly demonstrated the 
usefulness and feasibility of the deep learning system for fatal hypothermia diagnosis.
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Introduction
Fatal hypothermia occurs when the body’s core tem-

perature drops below the normal range due to exposure to 
extreme cold and the consequential cardiovascular and 
respiratory failure.  It is one of the main causes of mortality 
in cold climates and accidents such as mountaineering.  The 
diagnosis of hypothermia relies on a combination of 
autopsy findings related to hypothermia and the exclusion 
of other possible causes of death.  However, it could be dif-
ficult to perform autopsies due to the time cost or culture 

reasons, especially in countries with low autopsy rates such 
as Japan.  Therefore, post-mortem computed tomography 
(PMCT) was introduced to assist in the diagnosis of hypo-
thermia, which could provide a non-invasive and compre-
hensive evaluation of the body’s internal structures and 
abnormality information (Michiue et al. 2012).

With the assistance of PMCT, Kawasumi et al. (2013) 
found that many cases of hypothermic death exhibited cer-
tain characteristics, including a lack of increased concentra-
tion in the lung-field, blood clotting in the heart, thoracic 
aorta, or pulmonary artery.  Hyodoh et al. (2016) investi-
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gated the time-related course of post-mortem lung changes 
on rabbits and found the percent of aerated lung volume 
remained significantly high in hypothermia.  Other studies 
(Hyodoh et al. 2013; Schweitzer et al. 2014) reported that 
hypothermia was associated with significantly lower lung 
PMCT attenuation and lung weights.  However, these find-
ings have a relatively low specificity because researchers 
found some causes, like carbonic oxide poisoning and 
severe diabetic ketoacidosis, also correlating with below-
normal PMCT lung attenuation (Kawasumi et al. 2013; 
Schweitzer et al. 2014).  But most of all, there is a shortage 
of forensic pathologists (Weedn and Menendez 2020), and 
even fewer can interpret radiology images.  The accuracy of 
the diagnosis may also vary depending on the forensic 
pathologist’s proficiency.

To overcome the challenges above, we proposed the 
first deep learning-based diagnosis system for hypothermia, 
and further explored the possibility of utilizing the models 
for direct confirmation after the on-site investigation, 
instead of just helping with diagnosis.  Deep learning (DL) 
has shown remarkable performance in classifying and 
detecting various pathologies in medical images.  It can 
automatically learn representative features from raw data 
without requiring handcrafted feature in traditional meth-
ods.  For example, DL-based diagnosis systems were devel-
oped for drowning and showed high performance on classi-
fication (Homma et al. 2020; Sakamoto et al. 2021; Zeng et 
al. 2021, 2023).  They showed the feasibility of delivering 
accurate diagnosis using DL-based systems along with 
information from the on-site investigation.

In this paper, we trained deep convolutional neural 
networks (DCNNs) to diagnose fatal hypothermia using 
PMCT images and evaluated them on an independent test 
set.  In order to validate the effectiveness of the DCNNs 
and to provide transparent results, we visualized areas that 
were important to the models and discussed some typical 
cases.

Materials and Methods
Data and imaging conditions

As part of pre-autopsy screening, PMCT scanning was 
performed on a multi-channel scanner (Canon Medical 

Systems, Otawara, Japan).  The same type of scanner was 
used throughout the study, ensuring consistency in the 
imaging parameters and quality.  Chest CT images of size 
512 × 512 pixels were acquired using a 1 mm × 4-row slice 
configuration mode.  Most cases contained 28 images at 
seven different levels, from the pulmonary apex to the low-
est part of the left lung.  Each level was composed of 4 
slices, and the number of regions in a case varied from six 
(24 images) to nine (36 images) due to individual differ-
ences, such as stature.  There were four forensic patholo-
gists who performed the operation, and the diagnosis of the 
cause of death was based on a mutual consensus.  The final 
check of autopsy reports was made by a 35-year experi-
enced forensic pathologist to ensure the consistency for all 
cases (Funayama 2008).  In this study, as we aimed to use 
lung features to diagnose hypothermia with DCNNs, only 
the former 24 images of each case were used because the 
images of the lower part mostly present liver and stomach.  
An example of a PMCT case is shown in Fig. 1.

We selected 108 autopsy cases (64 males and 44 
females) diagnosed as hypothermia from the Autopsy 
Imaging Center, Tohoku University Graduate School of 
Medicine, from January to December in 2021.  One male 
and two female cases were excluded because the direct 
causes of death were not hypothermia, despite the low core 
temperature when dying.  The average ages of the remain-
ing males and females were 70.9 (range 33-95) and 74.0 
(range 25-93) years, respectively.  Meanwhile, we had 115 
death cases as the non-hypothermia group (71 males and 44 
females) from 2015 to 2021.  The average ages of the males 
and females were 54.5 (range 21-92) and 58.5 (range 21-94) 
years, respectively.  The causes of death in the non-hypo-
thermia group were cardiovascular disease (n = 46), 
asphyxia (n = 13), infection (n = 7), poisoning (n = 15), 
trauma (n = 16), alcoholic and diabetic ketoacidosis (n = 6), 
and other causes like subarachnoid hemorrhage (n = 12).  
The postmortem time was ranging 0.5-21 days (3.4 ± 3.7, 
mean ± SD) in hypothermia cases and 0.4-5 days (1.4 ± 0.8) 
in non-hypothermia cases.  Besides, the time of 16 hypo-
thermia and 7 non-hypothermia cases cannot be determined, 
probably ranging from several days to several weeks.  
Although the average postmortem time of the hypothermia 

Fig. 1.  A simplified example of a post-mortem multi-slice CT case.
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cases is longer, due to the scene of low temperature and the 
outdoors, decomposition in bodies was slow.  Also, a signif-
icant difference in the age distribution can be observed 
between two groups as the elderly are more susceptible to 
hypothermia and are at higher risk of dying from it com-
pared to younger individuals.  We empirically excluded 
cases with advanced decomposition, infants, severe carbon-
ization, drowning, and severe chest trauma in both groups.  
Among all cases, cardiopulmonary resuscitation (CPR) was 
performed in eight hypothermia cases and 23 non-hypother-
mia cases.  As mentioned before, fatal hypothermia was 
associated with significantly lower lung PMCT attenuation 
and lower lung weights, so we also listed the lung weights 
(g) in both hypothermia and non- hypothermia cases (con-
trol) in Table 1.

The use of PMCT images for this study was approved 
by the ethics board of Tohoku University (protocol number: 
2021-1-495; date: 2018-09-18).  Informed consent was not 
required for this research.

Deep convolutional neural network
Considering different DL model has its own strengths, 

and the most significant characteristic of fatal hypothermia 
is low lung PMCT attenuation (not feature-rich for com-
puter vision), we chose to compare three mainstream 
DCNN architectures that have achieved state-of-the-art 
results on image classification.  The three models were 
Inception-V3 (Szegedy et al. 2016), VGG-16 (Simonyan 
and Zisserman 2014), and ResNet18 (He et al. 2016).  

Inception-V3 uses a combination of parallel convolutions 
with different filter sizes to capture features at different 
scales.  It has 48 layers and includes multiple Inception 
modules, which are composed of parallel convolutions with 
different filter sizes and pooling layers.  VGG-16 contains 
16 layers, including 13 convolutional layers and three fully 
connected layers.  The architecture is known for its simplic-
ity and uniformity.  ResNet18 has skip connections to 
address the problem of vanishing gradients in very deep 
neural networks.  It has 18 layers, including 16 convolu-
tional layers and two fully connected layers.  VGG-16 is 
known for its simplicity and uniformity, with all convolu-
tional layers having a small 3 × 3 filter size and the same 
padding and stride.  ResNet18 and Inception-V3 use their 
unique architectures to address the problem of vanishing 
gradients in deep neural networks.

To make the models converge faster, we tuned on the 
ImageNet-pretrained models (Deng et al. 2009), and substi-
tuted two new fully connected layers for the original layers 
on top of the last convolutional layers.  The outputs of mod-
els provided a probability for each group: hypothermia or 
non-hypothermia (control group).  A higher probability 
indicated a greater likelihood of the input being hypother-
mia, and vice versa.  The final determination of a hypother-
mia or non-hypothermia was based on whether the proba-
bility was greater or less than a default threshold of 0.5.  
When the probability is close to 0.5, it suggested the input 
might exhibit both characteristics of each class and could 
be a hard example to classify.

Table 1.  Lung weights (g) in the hypothermia and non-hypothermia cases.

Lung
Hypothermia Non-hypothermia

Male Female Male Female

Left 314.2 ± 91.2 236.6 ± 91.9 548.8 ± 158.9 390.8 ± 184.9
Right 365.2 ± 107.0 282.7 ± 108.1 649.8 ± 195.1 460.9 ± 222.4

Data are shown as mean ± SD.

Fig. 2.  An illustration of the visualization method.  
	 Given an input image (a), we compute the gradient of the score for a target class with respect to feature maps of the last 

convolutional layer (b).  This gradient is then further processed and used to weight the feature maps and overlap with 
the input to obtain the visualization result (c).
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We randomly split the original PMCT dataset into the 
training and test set, each containing 93 and 15 hypother-
mia cases (2,188 and 404 images), and 100 and 15 non-
hypothermia cases (2,416 and 428 images), respectively.  In 
a corresponding manner, the results were given in image-
wise and case-wise, where the case-wise results were 
obtained by averaging all predictions of a same case.  To 
reduce overfitting on the small dataset, we applied data aug-
mentation on the training set, which will not increase the 
total sample size (Shorten and Khoshgoftaar 2019).  During 
the training process, an input would be randomly trans-
formed into one of the following states: unchanged, hori-
zontally/vertically flipped, flipped, horizontally/vertically 
shifted in the range of 20% of the width/height of the input, 
or randomly rotated in the range of 20°.  All models were 
optimized using the Adam optimizer with a learning rate of 
1 × 10-6 and a batch size of eight.

Visualization
DCNNs can learn to recognize complex patterns in 

images, but their internal workings are often opaque.  This 
makes it difficult to understand which region of the input 
image was important to the prediction (Singh et al. 2020; 
Tjoa and Guan 2021).  In order to evaluate the effectiveness 
of the DCNNs and to provide transparent results, we uti-
lized a saliency visualization technique called Gradient-
weighted Class Activation Mapping (Grad-CAM) 
(Selvaraju et al. 2017), which is used in computer vision to 
understand which parts of an image a DCNN focuses on 
while making a prediction.

A simple illustration of Grad-CAM is shown in Fig. 2.  
To generate the heatmap from a given input (a), we can cal-
culate the gradient (b) of the final convolutional layer of the 
network with respect to the predicted class.  The gradients 
are then global average-pooled to obtain the importance of 
each output of the final convolutional layer, i.e., feature 
map.  Finally, the weighted combination of feature maps is 
used to overlap with the input to generate the visualization 

Fig. 3.  The probability distribution of the image-wise predictions 
for hypothermia and non- hypothermia group in test set.  

Fig. 4.  The receiver operating characteristic (ROC) curves 
and the area under the ROC curve (AUC) values of three 
models (Inception-V3, VGG-16 and ResNet18).

	 (a) Image-wise results.  (b) Case-wise results.  The numeric 
variables in ROCs are the hypothermia probability 
predicted by models.

Table 2.  The sensitivity, specificity and AUC of models on the test set.

Models
Image-wise Case-wise

Sensitivity Specificity AUC Sensitivity Specificity AUC

Inception-V3 0.948 0.741 0.905 1 0.867 0.933

VGG-16 0.918 0.743 0.904 0.867 0.933 0.951
ResNet18 0.884 0.769 0.867 0.867 0.933 0.956

AUC, the area under the ROC curve.
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result (c).  This whole process would provide a visual 
explanation for the network’s decision, indicating the 
regions of the input image that influenced the output.  
Warmer (red) regions correspond to higher scores for the 
target class, meaning these areas are more important to the 
model.

Results
A default threshold of 0.5 was used to predict the input 

into hypothermia or non-hypothermia, then the distribution 
of predicted hypothermia probabilities can be presented as 
Fig. 3.  Although a small proportion of images would be 
misclassified as false positive (FP) or false negative (FN) 
cases, most images can be correctly predicted with a high 
confidence as depicted in both ends of the horizontal axis.

We used the receiver operating characteristic (ROC) 
curve, and area under the ROC curve (AUC) to evaluate the 
models’ performance on hypothermia prediction, as shown 

in Fig. 4.  Based on the image-wise predictions (a), we cal-
culated the case-wise predictions (b) as well.  All images 
contained in most cases were correctly classified, but in a 
small number of cases there were several misclassified 
images.  By averaging the probabilities of all images, we 
can further improve the classification performance of mod-
els.  The sensitivity, specificity, and AUC of the three mod-
els are given in Table 2.  Inception-V3 achieved the best 
image-wise performance with a sensitivity of 0.948 and 
AUC of 0.905, and a case-wise sensitivity of 1 and AUC of 
0.933.  The image-wise specificity was lower than their 
sensitivity for all models, but the situation conversed on the 
case-wise results of VGG-16 and ResNet18.  Such change 
might be caused by the averaging operation on image-wise 
results, as it could change the optimal operating point on 
the ROC curves.

Fig. 5.  Two true positive (TP) cases.  
	 The upper row is the original images, and the bottom is the visualization with the probabilities of hypothermia.  (a) Case 

1, female, aged 77.  (b) Case 2, female, aged 25.
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Discussion
To understand how the models make decisions and 

provide insight into their inner workings, we chose VGG-
16 as an example and visualized the important regions of an 
input image that models use to make their prediction.  
Considering the difference in the age distribution of hypo-
thermia and non-hypothermia cases, we gave one case of an 
elder person and one case of a younger person for both true 
positive (TP) and true negative (TN) examples.  All images 
in each case were classified correctly.  

The TP examples were shown in Fig. 5.  Case 1 
(female, aged 77; Fig. 5a) had a left and right lung weight 
of 210 g and 360 g.  The shadow on the ventral mediasti-
num side might be due to the lower right prone position 
when the body was found.  It can be observed that the 
model focused on the low lung attenuation area, which is 
consistent with the findings we mentioned before.  Case 2 

(female, aged 25; Fig. 5b) had a left and right lung weight 
of 250 g and 200 g, also showing low lung attenuation.  
Similar to Case 1, the model paid attention to nearly the 
whole lung area.

The TN examples were shown in Fig. 6.  The cause of 
death of Case 3 (male, aged 64; Fig. 6a) was bronchopneu-
monia and underwent cardiopulmonary resuscitation (CPR), 
with left lung weight of 630 g and right lung weight of 730 
g.  Case 4 (male, aged 35; Fig. 6b) was diagnosed as acute 
circulatory failure and received CPR from his family, with 
left lung weight of 510 g and right lung weight of 590 g.  
Similar to Case 1, the model paid attention to nearly the 
whole lung area.  The model barely considered the lung 
opacity as a characteristic of hypothermia, and correctly 
predicted most images in both cases with low hypothermia 
probabilities.  Some predictions were of a probability close 
to 0.5, suggesting the low confidence of the model.

In the following, we discussed some misclassification 

Fig. 6.  Two true negative (TN) cases.  
	 The upper row is the original images, and the bottom is the visualization with the probabilities of hypothermia.  (a) Case 

3, male, aged 64.  (b) Case 4, male, aged 35.
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Fig. 7.  Two false positive (FP) cases.  
	 The upper row is the original images, and the bottom is the visualization with the probabilities of hypothermia.  

 All images in each case were misclassified.  (a) Case 5, male, aged 77.  (b) Case 6, male, aged 91.

Fig. 8.  A false negative (FN) case.
	 The upper row is the original images, and the bottom is the visualization with the probabilities of hypothermia.  There 

were 15 out of 24 images in this case being misclassified as non-hypothermia.  Case 7, male, aged 84.
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in the test set.  Among the 15 non-hypothermia cases, two 
cases (including all images) were completely misclassified 
as hypothermia cases (FP).  Case 5 (male, aged 77; Fig. 7a) 
was bronchopneumonia, with left and right lung weight of 
370 g and 310 g.  Compared with the TN Case 3, we may 
find they had the same diagnosis of bronchopneumonia, 
except Case 5 not rederiving CPR.  Although there was 
inflammation in the base of the lung, the other observations 
were significantly different.  Its low lung CT attenuation 
and lung weights (Table 1) were very similar to the charac-
teristics of hypothermia, which might be the reason being 
misclassified.  Case 6 (male, aged 91; Fig. 7b) was diag-
nosed as ischemic heart disease by forensic pathologists, 
with left and right lung weight of 260 g and 330 g.  This 
case presented almost the same features as Case 5 and was 
also misclassified as a hypothermia case.

Among the 15 hypothermia cases, only one case (Case 
7) was misclassified as non-hypothermia cases (FN).  As 
shown in Fig. 8, Case 7 (male, aged 84) had emphysema 
and undergone CPR.  The left and right lung weight was 
350 g and 390 g, which was closer to the average of hypo-
thermia cases in Table 1.  There were 15 out of 24 images 
in Case 7 being misclassified as non-hypothermia, in which 
12 of them were predicted with a low hypothermia proba-
bility near to 0.210 (± 0.045).  Only four images were pre-
dicted with a hypothermia probability higher than 0.8.  The 
above-mentioned made Case 7 a hard example to classify, 
and even forensic pathologists need to consider other infor-
mation to make the final decision.  Although Case 7 was the 
only misclassified case in the test set that received CPR 
(seven in total), it is hard to tell whether the model can 
accurately diagnose hypothermia-CPR cases since the sam-
ple size is small.  Because CPR does affect AI diagnosis of 
fatal hypothermia, near-complete differentiation is difficult 
at this time and remains a future challenge.

There is some limitation in this study.  For Case 6 and 
7, the area of the lung parenchyma where the presence or 
absence of edema can be observed decreases due to emphy-
sema (air cyst).  One may notice that the average age of the 
hypothermia cases was significantly higher than that of the 
non-hypothermia subjects, and the elderly usually have a 
higher incidence of emphysema than the young.  But in our 
dataset, there were only two cases with emphysema in 
hypothermia and one in non-hypothermia.  Thus, there is 
little chance that the results were influenced by the higher 
incidence of emphysema among the elderly.  This potential 
bias would be seriously considered in future work.  Also, 
these misclassifications show the non-specificity of hypo-
thermia characteristic.  The low lung CT attenuation and 
lung weights, which are characteristic of hypothermia, can 
also be present in non-hypothermic dehydration cases with-
out pulmonary edema, such as starvation, heat stroke, and 
blood loss, which cannot be distinguished with hypothermia 
via postmortem imaging or examination.  Meanwhile, it is 
difficult to collect dehydration cases (other than hypother-
mia) for the control group.  However, combining with the 

on-site investigation information, we can further ensure the 
classification results of the model based on the high image-
wise sensitivity of 0.948 and AUC of 0.905, and case-wise 
sensitivity of 1 and AUC of 0.933.

In conclusion, we proposed a deep learning-based 
computer-aided diagnosis system for hypothermia using 
post-mortem lung CT images.  Three models were trained, 
compared, and evaluated on an independent test set.  Then 
we discussed the visualization results that provide us with a 
better comprehension on the decision of models.  Through 
the detailed information from autopsy, we gave in-depth 
analysis of those misclassified cases and highlighted the 
usefulness and feasibility of the high-performance DL mod-
els.  Given there would be a lot of information from on-site 
investigation about the discovered bodies, we are consider-
ing the models’ potential to be used for direct confirmation 
rather than assistance for forensic pathologists.  As future 
work, we can ensemble multiple classifiers to reduce the 
number of false positives produced by any individual fea-
ture.  Also, by adjusting the threshold of classification prob-
abilities, the trade-off between sensitivity and specificity 
can be optimized based on the specific application.
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