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This work was designed to explore the value of immune and metabolism-related genes (IMRGs) in lung 
adenocarcinoma (LUAD) prognosis, with the intention of aiding the application of immunotherapy in LUAD 
patients.  Differential gene expression analysis was conducted using The Cancer Genome Atlas (TCGA)-
LUAD data.  After merging and deduplication, an intersection was taken with LUAD differential genes to 
acquire IMRGs.  716 IMRGs were utilized for LUAD clustering, resulting in the stratification of LUAD 
patients into two subtypes.  Cluster-1 demonstrated higher immunophenoscore and lower tumor immune 
dysfunction and exclusion scores, indicating that cancer patients in cluster-1 were more likely to benefit 
from immune checkpoint inhibitor therapy.  Somatic mutation analysis revealed higher mutation rates in 
both sample and gene levels for cluster-2 compared to cluster-1.  Additionally, we predicted ten prospective 
candidate drugs, including Teniposide and phloretin, for LUAD patients.  LUAD was stratified into two 
subtypes with distinct molecular features based on IMRGs.  These subtypes exhibited pronounced 
differences in immune processes, checkpoints, genetic mutations, and drug sensitivity.  Our endeavor has 
furnished invaluable insights into comprehending the molecular characteristics of LUAD, potentially 
enhancing the precision of immunotherapeutic strategies tailored for LUAD.
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Introduction
Lung cancer (LC), distinguished by its elevated inci-

dence and mortality rates, persists as a malignancy of 
worldwide significance.  According to the 2020 Global 
Cancer Statistics report, approximately 2.2 million new 
cases of LC were estimated worldwide, accounting for the 
second highest incidence (11.4%), and 1.8 million new 
deaths were reported, making it the leading cause of cancer-
related mortality (18.0%) (Sung et al. 2021).  Among its 
subtypes, lung adenocarcinoma (LUAD) stands as a pre-
dominant variant (Nooreldeen and Bach 2021).  LUAD is 
marked by its extended latency period, subtle early symp-
toms, and high malignancy.  Furthermore, a considerable 
proportion of cases involving LUAD are identified at an 
advanced stage, thus bypassing the most opportune phase 
for therapeutic intervention (Blandin Knight et al. 2017).  

Despite significant breakthroughs in clinical diagnosis and 
treatment strategies, such as targeted therapies and immu-
notherapies (Cancer Genome Atlas Research Network 
2014), LUAD patients still grapple with challenges includ-
ing postoperative recurrence, low drug sensitivity, and 
unfavorable prognosis (Seguin et al. 2022).  Consequently, 
an immediate imperative exists to enhance both diagnostic 
and therapeutic benchmarks for LUAD.  Conventional 
pathological staging often dictates treatment decisions; 
however, the heterogeneous nature of LUAD in radiology, 
pathology, and molecular domains underscores the current 
lack of multidisciplinary integration (Socinski et al. 2016).  
With the advent of sequencing technologies, LUAD 
research and treatment paradigms have evolved from pure 
histopathological subtyping to molecular classification 
(Kashima et al. 2019).  Throughout LUAD’s initiation and 
progression, distinct driver gene mutations interact to medi-
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ate tumor evolution, evident in the spectrum of tumor het-
erogeneity (Inamura 2018).  Thus, an analysis amalgamat-
ing molecular classification and clinical-pathological 
features of LUAD holds promise for optimizing personal-
ized treatments for patients.

Immunoreactivity (Liu et al. 2022) and metabolic 
reprogramming (Martínez-Reyes and Chandel 2021) play 
pivotal roles in tumor initiation and progression.  There 
exists a robust interplay between cellular immunity and 
metabolic reprogramming (Li et al. 2019).  Metabolic pro-
cesses not only provide the essential energy required for 
immune cell activity (Xia et al. 2021) but also contribute to 
immune suppression and tumor promotion within the tumor 
microenvironment (TME) (Bader et al. 2020).  Thus, a clas-
sification of LUAD based on either immunological or meta-
bolic perspectives can unveil distinct molecular features.  
Utilizing RNA sequencing profiles of LUAD from The 
Cancer Genome Atlas (TCGA) and Gene Expression 
Omnibus (GEO) databases encompassing genes associated 
with immune activation, Zeng et al. (2023) segregated 
patients into two clusters, exhibiting differential survival 
and immune cell infiltration.  Huang et al. (2023), using 
metabolism-associated genes from TCGA and GEO data, 
categorized LUAD patients into three molecular clusters, 
revealing varying prognosis, metabolic pathways, immune 
processes, and checkpoints.  Choi and Na (2018), relying 
on the characteristics of TME glycolysis and immune cell 
infiltration in LUAD transcriptome data, divided patients 
into four clusters showcasing distinct immune cell compo-
sition, tumor metabolism, and survival.  In this endeavor, 

we amalgamated immune and metabolism-related genes 
(IMRGs) gleaned from prior studies and integrated them 
with LUAD samples for molecular subtyping.

As depicted in Fig. 1, we leveraged the dataset from 
TCGA database to perform molecular subtyping of LUAD 
samples ground on IMRGs.  Subsequently, we evaluated 
the inter-class survival outcomes, immune cell infiltration, 
immunotherapy response, protein-protein interaction (PPI) 
networks and enrichment analysis, somatic mutations, and 
prediction of targeted small molecules.  This study endeav-
ored to enhance the prognosis and treatment strategies for 
LUAD.

Materials and Methods
Data source

RNA sequencing transcriptomic data of LUAD were 
obtained from TCGA database (https://portal.gdc.cancer.
gov/), comprising 59 normal samples and 541 LUAD sam-
ples.  The patients included were mainly pathologically 
diagnosed with LUAD and had no other comorbidities.  
Metabolism-related genes (MRGs) (Cui et al. 2023) and 
immune-related genes (IRGs) (Bhattacharya et al. 2014) 
were sourced from both literature and the ImmPort database 
(https://immport.niaid.nih.gov).

Differential expression analysis
The R package edgeR was employed to analyze differ-

entially expressed genes (DEGs) within LUAD and Normal 
samples (Robinson et al. 2010).  DEGs were selected using 
criteria FDR < 0.05 and |log(FC)| >1.  After integration and 

Fig. 1.  Workflow diagram.
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deduplication of MRGs and IRGs, intersection was taken 
with DEGs, obtaining differential IMRGs.

Unsupervised consensus clustering of IMRGs
IMRGs associated with LUAD prognosis were identi-

fied using univariate Cox regression analysis.  R package 
ConsensusClusterPlus was used to conduct 1,000 repeti-
tions of consensus clustering analysis to ensure stability and 
optimal cluster numbers (Wilkerson and Hayes 2010).  The 
survival R package was utilized to investigate survival dif-
ferences among clusters.

Immune infiltration and immune factor analysis between 
different molecular subtypes

R packages Estimation of STromal and Immune cells 
in MAlignant Tumor tissues using Expression data 
(ESTIMATE) (Yoshihara et al.  2013), Cell-type 
Identification by Estimating Relative Subsets of RNA 
Transcripts (CIBERSORT) (Newman et al. 2015), and gene 
set variation analysis (GSVA) (Hänzelmann et al. 2013) 
were respectively employed for immune infiltration and 
immune factor analysis.  Visualization was performed using 
the R package pheatmap.  Further assessment was con-
ducted to evaluate the expression patterns of human leuko-
cyte antigen (HLA) and immune checkpoint-related genes 
within the two subtypes.

Analysis of immunophenoscore (IPS) and tumor immune 
dysfunction and exclusion (TIDE) score between different 
molecular subtypes

IPS and TIDE scores were analyzed using The Cancer 
Immunome Atlas (TCIA, https://tcia.at) and TIDE (harvard.
edu) databases to uncover differences between the two sub-
types.

PPI network and Gene Ontology (GO)/Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analysis of DEGs between 
different molecular subtypes

The R package edgeR was used to analyze DEGs 
(FDR < 0.05 & |log (FC)| > 1) between the two subtype 
samples.  The STRING database (https://cn.string-db.org/) 
was used to construct a PPI network for DEGs (highest 
confidence > 0.7).  R package ClusterProfiler (Yu et al. 
2012) was used to conduct GO enrichment and KEGG 
pathway analyses on DEGs to illuminate potential func-
tional pathways.  Results were visualized using the R pack-
age enrichplot.

Tumor mutation analysis of different molecular subtypes
Mutation data for single nucleotide variants (SNVs) of 

LUAD patients were obtained.  The R package maftools 
(Mayakonda et al. 2018) was utilized to analyze and visual-
ize mutation status, mutation types, SNV classes, and muta-
tion rates differences between the two subtypes, and the top 
ten genes with the highest mutation rates within the two 
subtypes were screened.

Analysis of targeted small molecules for LUAD
The Connectivity Map (cMAP) database (https://clue.

io/) enables comparison of drugs highly correlated with 
tumors using gene expression profile data, inferring the 
principal structure of most drug molecules, and deducing 
potential mechanisms of action (Yang et al. 2013).  Through 
the cMAP database, the top 150 DEGs of the two subtypes 
were used to predict targeted small molecules for LUAD.

Statistical analysis
For bioinformatics data, the entire dataset was filtered 

by removing missing and duplicate data, and all statistical 
analysis and visualization was performed using R software 
(version 3.6.3) (http://www.rproject.org/).  Survival analysis 
was performed using Kaplan-Meier method and log-rank 
test.  Univariate Cox regression analysis was used to evalu-
ate prognostic IMRGs.  ConsensusCluster Plus R package 
was used to perform consensus cluster analysis and 1,000 
repetitions to ensure classification stability and optimal 
cluster number.  P < 0.05 was considered statistically sig-
nificant.

Results
LUAD molecular subtypes based on IMRGs

Expression data of LUAD were downloaded from 
TCGA database.  Differential analysis between LUAD and 
normal samples yielded 5,576 DEGs.  A total of 619 MRGs 
were sourced from the literature (Supplementary Table S1), 
and 2,483 IRGs were obtained from the ImmPort database 
(Supplementary Table S2).  After integration, deduplication, 
and intersection with DEGs, 716 IMRGs were identified 
(Fig. 2A and Supplementary Table S3).  Univariate Cox 
regression analysis identified 169 IMRGs correlated with 
prognosis (Supplementary Table S4).  Based on the expres-
sion profiles of these genes, consensus clustering was 
applied to classify patients, determining the optimal number 
of clusters as 2 (Fig. 2B,C).  This led to the identification of 
two distinct molecular subtypes, denoted as cluster-1 and 
cluster-2 (Fig. 2D), containing 265 and 215 patient samples 
respectively (Supplementary Table S5).  Further survival 
analysis revealed that cluster-1 exhibited a higher overall 
survival rate (Fig. 2E), implying that patients within clus-
ter-1, under the IMRG expression pattern, might experience 
a more favorable prognosis and survival outcome.

Analysis of immune features between molecular subtypes
Immune infiltration profoundly influences clinical 

treatment and features in tumor development.  To mine 
immune features between the two molecular subtypes, we 
employed ESTIMATE R package to score stromal and 
immune cells in LUAD tumor samples from the TCGA 
dataset.  The results indicated significantly higher stromal, 
immune, and ESTIMATE scores in cluster-1 compared to 
cluster-2 (Fig. 3A).  Subsequently, we utilized CIBERSORT 
and single sample gene set enrichment analysis (ssGSEA) 
to further investigate differences in immune levels between 
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the two subtypes.  CIBERSORT analysis revealed higher 
infiltration levels of B cell memory, T cells CD4 memory 
resting, Monocytes, Macrophages M2, Dendritic cells rest-
ing, Dendritic cells activated, and Mast cells resting in clus-
ter-1.  Conversely, cluster-2 exhibited enrichment in Plasma 
cells, T cells CD4 memory activated, NK cells resting, 
Macrophages M0, Macrophages M1, and Mast cells acti-
vated (Fig. 3B).  Through ssGSEA analysis, we explored 
the distinct distribution of 16 immune infiltrating cells 
between the two risk groups, with results demonstrating 
higher abundance of aDCs, B cells, DCs, iDCs, 
Macrophages, Mast cells, Neutrophils, pDCs, T helper 
cells, TIL, and Treg cells in cluster-1, with a more notice-
able elevation of Th2_cells in cluster-2 (Fig. 3C,D).  
Cluster-1 exhibited higher immune scores in APC co-inhi-
bition/stimulation, Chemokine receptors (CCR), Check-
point, HLA, Parainflammation, type_I_IFN Response, and 
type_II_IFN Response (Fig. 3C,E), suggesting stronger  
and more active immune responses in cluster-1 associated 
with better prognosis.  Crucial in cancer immunology as 
molecules responsible for antigen presentation to T lym-
phocytes, expression of HLA genes between the two sub-
types was explored.  With the exception of HLA-A, other 
HLA genes showed higher expression in cluster-1 (Fig. 3F).  
ICs and their ligands are potential therapeutic targets.  
Further analysis of the expression of 12 immune checkpoint 

inhibitors (ICIs) revealed higher expressions of CD28, 
ICOS, BTLA, CD27, CD40LG, and CD96 in cluster-1, 
while LAG3 and CEACAM19 were more expressed in 
cluster-2 (Fig. 3G).  In summary, this combined immune 
and metabolic grouping could serve as a potential bio-
marker for ICI therapy.

Immunotherapy assessment between molecular subtypes
To study the differences in immunotherapy outcomes 

between distinct immune and metabolic molecular sub-
types, we obtained IPS scores of LUAD from TCIA 
(Supplementary Table S6).  We plotted the IPS score differ-
ences between the two subtypes within LUAD-TCGA can-
cer samples (Fig. 4A).  The results indicated significantly 
higher IPS scores in cluster-1 compared to cluster-2, imply-
ing that cancer patients in cluster-1 might benefit more from 
ICI therapy.  Further computation of the TIDE score was 
performed to predict the level of immune escape in immu-
notherapy (Supplementary Table S7).  Fig. 4B showed that 
cluster-1 had lower TIDE scores than cluster-2, suggesting 
a lower likelihood of immune evasion for patients in clus-
ter-1.  Therefore, cluster-1 patients were more predisposed 
to benefit from ICI therapy.

Fig. 2.  Molecular subtyping based on IMRGs. 
	 (A) Integration and intersection of IRGs with DEGs; (B) Cumulative distribution function (CDF) curve of TCGA cohort 

samples; (C) CDF delta area curve of TCGA cohort samples indicating relative changes in the cumulative distribution 
function area for each category number (k) compared to K-1; (D) Heatmap of TCGA cohort sample clustering; (E) Ka-
plan-Meier (KM) survival curves for overall survival (OS) prognosis of the two subtypes in the TCGA cohort.
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PPI network construction and GO/KEGG enrichment  
analysis between molecular subtypes

To uncover the potential biological significance of 
DEGs within IMRGs subtypes, we performed DEG analy-
sis between cluster-1 and cluster-2, resulting in 2,197 DEGs 
(Supplementary Table S8).  Subsequently, we constructed a 

PPI network for these DEGs, which consisted of 1,001 
nodes and 374 edges (Fig. 5A).  Functional exploration of 
DEGs in the two subtypes was carried out through GO and 
KEGG enrichment analyses.  GO enrichment showed that 
DEGs were enriched in functions such as channel activity, 
passive transmembrane transporter activity, and collagen-

Fig. 3.  Assessment of immune infiltration between molecular subtypes.
	 (A) Differential analysis of ESTIMATE immune-related scores between the two subtypes; (B) Differential analysis of 

CIBERSORT immune cell components between the two subtypes; (C) Heatmap of ssGSEA analysis for immune cell 
components in the two subtypes; (D) Differential analysis of immune cell components in the two subtypes using ssG-
SEA; (E) Differential analysis of immune functional components in the two subtypes using ssGSEA; (F) Analysis of 
HLA expression between the two subtypes; (G) Analysis of immune checkpoint expression between the two subtypes;  
* indicates P < 0.05, ** indicates P < 0.01, *** indicates P < 0.001, NS indicates P > 0.05.
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containing extracellular matrix (Fig. 5B).  KEGG analysis 
revealed that DEGs were enriched in pathways like 
Neuroactive ligand-receptor interaction, Systemic lupus 
erythematosus, and Neutrophil extracellular trap formation 
(Fig. 5C).  As a result, the molecular subtypes exhibited dif-
ferences in functional activities and metabolic pathways.

Molecular subtype tumor mutations
Somatic gene mutations are crucial drivers of cancer 

pathogenesis.  Therefore, we analyzed the differences in 
somatic mutation frequencies between the two subtypes.  
Utilizing the MafTools R package, we conducted an analy-
sis and visualization of the mutation data between the 
molecular subtypes.  The top 20 mutated genes and their 
frequencies differed between the subtypes, and the mutation 
types were predominantly Missense Mutations, with C > A 
and C > T being the most frequent SNV mutations (SNV 
Class).  The stacked bar plot depicted the top ten mutated 
genes in each subtype.  For cluster-1, the top ten mutated 
genes were TTN, MUC16, CSMD3, RYR2, TP53, LRP1B, 
USH2A, FLG, ZFHX4, and KRAS.  In cluster-2, they were 
TTN, CSMD3, MUC16, RYR2, LRP1B, USH2A, ZFHX4, 
TP53, XIRP2, and SPTA1.  Additionally, cluster-2 exhib-
ited higher sample mutation rates and gene mutation rates 
compared to cluster-1 (Fig. 6A-D).  Overall, this suggested 
an association between molecular subtypes and gene muta-

tions.

Targeted small molecules for molecular subtypes
Using the cMAP database, we predicted small mole-

cule compounds targeted for LUAD.  The prediction was 
based on the Score.  The molecule compounds with the 
lowest 10 scores represented the predicted drugs.  Utilizing 
the DEGs between the molecular subtypes, we identified 
teniposide, RO-28-1675, phloretin, pyrvinium-pamoate, 
olaparib, aminopurvalanol-a, purvalanol-a, JNJ-26854165, 
and WZ-4-145 as the ten most relevant drugs.  These com-
pounds could potentially serve as prospective candidate 
drugs for LUAD patients (Table 1).

Discussion
In recent years, researchers have proposed various 

molecular classifications of LUAD tumors, including sub-
types based on immune infiltration, MRGs, proteomics, 
non-coding RNA, and epigenetic modifications (Borczuk 
2016; Chalela et al. 2017; Huang et al. 2023).  These classi-
fications have contributed to the advancement of LC diag-
nosis and treatment, offering significant benefits to patients 
(Cooper et al. 2013; Sun et al. 2020; Huang et al. 2023).  
Additionally, studies have highlighted the tight connection 
between LC development and metabolism as well as immu-
nity (Bamji-Stocke et al. 2018).  However, there has been 

          Fig. 4.  Assessment of immunotherapy in molecular subtypes.
            (A) IPS scores of the two subtypes; (B) TIDE scores of the two subtypes; *** indicates P < 0.001.

Fig. 5.  PPI construction and GO/KEGG enrichment analysis.
	 (A-C) PPI network diagram (A), GO enrichment analysis results (B), and KEGG enrichment analysis results (C) of 

DEGs in the two clusters.  BP, biological process; CC, cellular component; MF, molecular function.
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limited research simultaneously addressing the closely 
intertwined fields of metabolism and immunity that are crit-
ical to cancer pathogenesis.  Recently, Guo et al. (2022) uti-
lized bioinformatics analysis to uncover the crucial roles of 
IMRGs in hepatocellular carcinoma tumorigenesis and pro-
gression.  Thus, building upon the current understanding of 
LUAD, we conducted a study focusing on IMRGs in the 
context of LUAD.  Specifically, based on the expression 
profiles of IMRGs, we categorized LUAD samples into two 
distinct classes.  We comprehensively described the molec-
ular characteristics of these subtypes by evaluating immune 

cell infiltration, immunotherapy response, PPI and enrich-
ment analysis, somatic mutations, and prediction of targeted 
small molecule drugs.  The outcomes of this study enhanced 
our comprehension of LUAD’s molecular features and held 
the potential to improve personalized and precise clinical 
management for LUAD.

Dividing LUAD patients into cluster-1 and cluster-2 
groups, we observed that patients in the cluster-1 group 
exhibited longer survival and a richer infiltration of immune 
cells, such as aDCs, B cells, DCs, iDCs, Macrophages, 
Mast cells, Neutrophils, pDCs, T helper cells, TIL, and 

Fig. 6.  Analysis of molecular subtype tumor mutations.
	 (A) Mutation information in cluster-1; (B) The waterfall map was used to show the top 20 mutant genes and their distri-

bution in cluster-1 group; (C) Mutation information in cluster-2; (D) The waterfall map was used to show the top 20 
mutant genes and their distribution in cluster-2 group.

Table 1.  Small molecules of LUAD predicted by DEGs of molecular subtypes.

Score Type ID Name Description

-100 cp BRD-A35588707 teniposide Topoisomerase inhibitor
-100 cp BRD-K21672174 RO-28-1675 Glucokinase activator
-100 cp BRD-K05653692 DL-PDMP Glucosyltransferase inhibitor
-100 cp BRD-K15563106 phloretin Sodium/glucose cotransporter inhibitor
-99.96 cp BRD-M86331534 pyrvinium-pamoate AKT inhibitor
-99.96 cp BRD-K02113016 olaparib PARP inhibitor
-99.96 cp BRD-K07762753 aminopurvalanol-a Tyrosine kinase inhibitor
-99.96 cp BRD-K50836978 purvalanol-a CDK inhibitor
-99.93 cp BRD-K83837640 JNJ-26854165 HDAC inhibitor
-99.93 cp BRD-U25771771 WZ-4-145 EGFR inhibitor
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Treg.  This suggested a close association between cluster-1 
patients and lymphocytic infiltration in the tumor milieu.  
Previous research has demonstrated that high-density 
tumor-infiltrating lymphocytes can suppress tumor progres-
sion (Park et al. 2022), particularly in patients undergoing 
ICI therapy (Lopez de Rodas et al. 2022).  The IPS and 
TIDE scores are used to predict patients’ response to immu-
notherapy by assessing the potential for tumor immune 
escape (Wang et al. 2023).  In our study, we found that clus-
ter-1 patients had higher IPS and lower TIDE scores com-
pared to cluster-2 patients, indicating that cluster-1 patients 
might derive more benefit from ICI treatment.  This further 
supported the notion of a favorable immunotherapy 
response in cluster-1 patients.

Regarding gene mutations, the favorable prognosis 
cluster-1 and the unfavorable prognosis cluster-2 exhibited 
low and high frequencies of gene mutations, respectively.  
Gene mutations in cancer cells provide a mechanism for the 
overexpression of oncogenic driver genes or the suppres-
sion of anti-cancer genes (Roepman et al. 2009).  Several 
common tumor-associated genes, including TP53 and 
KRAS, show lower expression in cluster-1.  TP53 is a 
human tumor suppressor gene, and its variants are associ-
ated with LC risk, prognosis, and somatic mutations in lung 
tumors (Mechanic et al. 2007).  Cluster-2 demonstrates ele-
vated expression of TP53 mutations, thus indicating higher 
risk and adverse prognosis.  Furthermore, reports suggested 
that LC with dual mutations in TP53 and other genes may 
have a poorer prognosis (La Fleur et al. 2019).  We found 
that the expression of genes like KRAS, TTN, CSMD3, and 
RYR2 was lower in cluster-1 compared to cluster-2.  
Therefore, we speculated that the combination of TP53 
gene mutations with other gene mutations might contribute 
to adverse prognosis.  Additionally, we predicted therapeu-
tic small molecule compounds for LUAD, including 
Teniposide, phloretin, and pyrvinium-pamoate.  Teniposide 
has been shown to enhance the efficacy of programmed cell 
death protein-1 antibody therapy (Li et al. 2022).  Phloretin 
exhibits activity in regulating metabolic homeostasis and 
anti-inflammation (Mao et al. 2022).  Pyrvinium-pamoate 
can block STAT3 synthesis in KRAS-mutated LC, leading 
to cell death.  Thus, the predicted compounds held potential 
for preventing LUAD progression.

In conclusion, our work shed light on the molecular 
characteristics of LUAD and might contribute to the refine-
ment of immunotherapy approaches for LUAD.  However, 
limitations existed.  Firstly, due to the lack of clinical infor-
mation regarding ICI therapy in the TCGA database, we 
could only assess the potential responsiveness to ICI ther-
apy based on IPS and TIDE analyses.  Secondly, the corre-
lation between immune-related features and ICI therapy 
sensitivity, as well as potential mechanisms of metabolism 
reprogramming, remain to be further validated through in 
vitro basic research and in vivo clinical studies.  Finally, the 
therapeutic efficacy of the small molecule drugs predicted 
from the cMAP database for LUAD is unknown in the clin-

ical context and requires validation through subsequent ani-
mal experiments and clinical trials.
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