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INTRODUCTION

In a previous report from the Institute Furuyama? described a histometrical
method with which the strength of arterial muscular coat could be estimated
with an accuracy sufficient to define medial hypertrophy in arterial hypertension.
On the basis of the obtained results increased medial strength of arteries was
regarded to be an anatomical estimate of elevated blood pressure in arterial
systems. However, an exact correlation of medial strength to intravascular blood
pressure was not possible, because there was no exact investigation available for
the purpose. In the present report, an attempt was made theoretically to
estimate intravascular blood pressure by means of mathematical treatments of
arterial casts formed by acrylic resin infusion.

In analytical studies of arterial wall, the most fundamental relation is given
by Laplace’s equation, T=PR, where T is the tension exerted on arterial wall, P
is intravascular blood pressure and R is arterial radius. Accordingly, the
structure of arterial wall is to be investigated in reference to the two physical
factors P and B. Direct measurements of arterial blood pressure are practically
of very limited application except on large arterial branches, and the aspect of
intravascular blood pressure gradient is at present only accessible to theoretical
treatments. Because the physical conditions of the arterial system characterized
by pulsatile flow in tubes with elastic walls do not strictly satisfy the requirements
for an application of Hagen-Poiseuille’s formula, which has been generally
employed for the estimation of intravascular blood pressure gradient, the results
derived from it are sometimes regarded to lack reliability. The deviations from
the requirements are probably most pronounced in large arterial branches, where
turbulent blood flow may develop at the maximum velocity of blood stream in the
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systolic phase. However, as Reynolds number is rapidly lowered and the
amplitude of pulsation is reduced with progressive arterial divisions, we can
assume that blood flow is continuously laminar, except in the region where blood
pressure drop is only insignificant, whether blood flow is laminar or turbulent.
In the present investigation of intravascular blood pressure gradient, there is
little reason to discard the formula, so far as the above deviations in physical
conditions ars concerned.

The main inconveniences in the practical application of the formula consist
rather in the following two points. One of them concerns the determination of
arterial radius. In the classical Hagen-Poiseuille’s formula blood pressure
difference 1s inversely proportional to the fourth power of arterial radius. Because
of the high exponent, small errors in the determination of arterial radius cause
surprisingly large deviations in the result. In spite of the strict requirement,
our means of direct measurements of arterial radius in living organisms are very
restricted and can hardly give informations adequate for our purpose. In
autopsy specimens, arterial radius is remarkably reduced on account of irregular
post-mortem arterial constriction, and there is no method sufficiently reliable to
reduce arteries in autopsy cases to their living states. In the present investiga-
tion, arterial radius is estimated by direct measurements on arterial cast of
acrylic resin. As the resin must be infused under a pressure which sometimes
surpasses physiological blood pressure, arteries are more or less distended, and it
1s evident that the radius of the cast does not correspond to that of living artery.
However, as will be discussed later in the last section of this report, the discrepancy
between casts and living arteries can be corrected to a considerable extent by
theoretical treatments of blood pressure drop. For the time being, the results of
direct measurements on arterial cast are preliminarily employed as the estimate
of arterial radius.

The other difficulty is that the classical Hagen-Poiseuille’s formula is only
applicable on an unbranching tube of uniform radius. In the study of actual
arterial systems with rapidly progressive ramification, the formula cannot be
introduced without an adequate information about the blood flow of individual
branches. In previous works blood flow of individual arterial branches was
estimated by the following procedure. The mean radius of anatomically defined
sites of an arterial system was determined by actual measurements. On the other
hand, the number of arterial branches of the corresponding anatomical region
was counted to give the sum of arterial cross section area. From the obtained
results the mean blood flow of individual arterial branches in each of the selected
orders of arterial ramification was determined, if the total blood flow of the
arterial system and the radius of the arterial trunk were given. In this way,
salculation of intravascular blood pressure was possible from the arterial trunk
o capillaries.  Even in more recent works of this direction, the principle employed
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Fig. 1. The aspect of branching of interlobular arteries of the kidney. The entire
region in the figure belongs to interlobular artery in anatomical sense of the word. Note
successive reduction of the radius and the difficulty in defining the ““mean radius” of
interlobular arteries without highly artificial selection of branch group.

remained essentially the same as in the works in the early decades of this century.
The major difficulty attaching to the method is that the determination of the
mean radius is hardly possible without a highly arbitrary and artificial selection of
arterial branch groups. If we observe actual arterial ramification, it is easily
comprehended that the radii of arterial branches at a certain anatomically
defined site, for example those of interlobular arteries of the kidney, are represented
by a continuous and uninterrupted series of values from the preceding arterial
branch group to that of the next order. There is no natural border in arterial
radius to separate anatomically defined arterial groups. 1In such a condition, it is
hardly appropriate to employ the “mean radius” of a certain branch group in a
theoretical treatment of blocd flow, because of the uncontrollable errors arising from
the assumption. Although the investigations hitherto reported revealed an
approximate pattern of intravascular blood pressure gradient characterized by
abrupt fall of blood pressure in the arteriolar region, comparative studies of
various arterial systems were almost impossible because of the inaccuracy in the
determination of factors in Hagen-Poisenille’s formula. In the present report, an
attempt was made to facilitate the application of the formula to a system of
branching tubes by expressing blood flow as a power function of arterial radius.
This procedure warranted more exact mathematical treatments of arterial
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systems than the method in previous works and made possible to characterize
the pattern of intravascular blood pressure gradient of different arterial systems.

BLOOD FLOW AS A FUNCTION OF ARTERIAL RADIUS

The blood supply of organs is accomplished by branching arterial systems
and 1t is expected that the radius of an arterial branch has some bearing on the
quantity of the tissue receiving blood from it. Because the mean blood flow for
equal tissue quantities of an organ can be assumed to be equal, the mean blood
flow of an arterial branch must be in some way correlated to its radius. The
relation was confirmed in the kidney by the following procedure. By means of
serial histological sections of a normal human kidney, the radius of interlobular
arteries of various size was determined on their exact cross sections together with
the number of glomeruli belonging to them. As arteries in autopsy specimens were
in a state of post-mortem constriction, the length of waving internal elastic
membrane was determined by attaching thin cotton thread on the magnified
depictions of arterial cross sections, divided by 2z and used as the estimate of
arterial radius. When we took the abscissa for arterial radius and the ordinate
for the number of glomeruli and plotted the results of measurement on a
logarithmic scale, distinct linear regression was confirmed as in Fig. 2. On the
assumption that the mean blood flow of all glomeruli was equal, the number of
glomeruli belonging to an arterial branch could be regarded to be proportional to
the mean blood flow of the branch. Accordingly, the relation of the radius of an
arterial branch to its mean blood flow was expressed by a general formula Q=¢r",
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Fig. 2. The relation between the radius r of interlobular arteries and the number of
glomeruli N belonging to each artery is presented on a logarithmic scale.
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i which ¢ was the mean blood flow of a given arterial branch, r was the radius
and ¢ and » were constants. In the case of I'ig. 2, the value of n was approxi-
mately 2.4. The meaning of ¢ will be discussed later. It was thus demonstrated,
that the mean blood flow of an arterial branch could be expressed by a power func-
tion of its radius. However, this method was not only extremely time consuming
and not adequate for an exact determination of # (mean =) on account of limited
number of observations, it was not applicable on other organs than on the kidney,
because they were devoid of anatomical structures such as glomeruli where the
uniformity of the mean blood flow could be postulated. A different approach to
the problem was attempted as follows. When an arterial branch with the
radius r and the mean blood flow ¢ 1s divided into a number of subbranches with
radii 7y, 7y, ... , 7w and with the mean blood flow @, @, . .. , @m, respectively, we
obtain Q=0,+&y+ .... +@m. If we assume that the mean blood flow is
proportional to the n-th power of radius, then it is determined by @=gr", @,=qr,",
Qo=qry",. .. ,Q,=qry". Accordingly, we obtain:
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Fig. 3. Approximate value of # is to be determined by graphical analysis on a semi-
logarithmic scale. Suppose an arterial branch of 360x in radius which divides into two
subbranches of 330x and 2004 in radius. Divide the radii of two larger branches with the
radius of the smallest branch, and we obtain 1.80 and 1.65. Take Cartesian scale for n
and logarithmic scale for the n-th power of the above ratios and draw two straight lines cor-
responding to 1.80” and 1.65%. Plot the points of 1.65"+1 on the diagram by giving
several different values for n. The series of the points make a curve which passes 2 of the
logarithmic scale at n==0 and asymptotically approaches to 1.65" with increasing =.
Determine the crossing point of the curve with the line of 1.80%, and we obtain 2.7 as an
approximate solution of 360"=330"+-200". The application of the method can be extended
to divisions of more than two subbranches.
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In other words, on the assumption that the mean blood flow of an arterial branch
is proportional to the n-th power of its radius, the n-th power of its radius must
be equal to the sum of the n-th power of the radii of its subbranches. If we
assume that the mean blood flow of arterial branches of equal radii is the same
within a certain organ, the relation @=¢r* is easily deduced from (1).

The equation (1) te determine the value of » when 7, ry, 7,,.. ., 7, are given,
is not to solve except in special cases, but approximate values on » with desired
accuracy can be obtained with an electron computer. When an electron computer
1s not available, the values can be estimated by the graphical analysis on a semi-
logarithmic scale. The method is demonstrated in Fig. 3. It was further very
practical to draw a nomogram like that in Fig. 4, with which a large number of
measurements on arterial casts could be treated without difficulty.

In Fig. 5, the values of » obtained from the measurements on the superior
mesenteric artery of the autopsy case of a 33-year-old non-hypertensive male are
demonstrated. The distribution of »n can be regarded to be a distribution of
errors around a certain value, but it is at the same time distinctly asymmetric.
The asymmetry is due to rapid elevation of n in the region of its larger values
with only slight increase in the radii of subbranches. If we take an arterial

100

Fig. 4. The nomogram for the determination of n. Suppose an arterial branch of »
in radius which divides into two subbranches of 7, and 7, (r;=7,) in radius. Transform
the equation r"=r"+r," to l==(ry/r)"+(ry/r)*. Take 100x r/r on the vertical axis and
100 r,/r on the horizontal axis. Draw a straight line vertical to each axis through the
points, respectively, and determine the crossing point of the two straight lines, which gives
the approximate value of n on the nomogram. (Planned and drawn by Fukasawa.)
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Fig. 5. The frequency distribution of # of a normal mesenteric artery. Note distinct
asymmetry of the distribution.
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Fig. 6. The distribution of n of the same sample group as in Fig. 5 after arctangent
transformation. The distribution is almost perfectly symmetrized.

branch with radius 7, which divides into two subbranches of identical radius ;, the
formula (1) will be 7*=27,". Fixing r to a constant value and giving to 7; succes-
sively increasing values from 7/2 to r, we obtain a series of corresponding # ranging
from 1 to infinity. Now we set the values of 7y, 75,. .., 7; s0, that the interval of
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TaBrLE I-a.

: ‘ ‘ 1 ‘ :
. Autopsy : Age ‘  Number of ‘ ) 'Z —arctan @ Variance
" number | and Organ | samples | 7 (radian) | Sx%/(N -1)
1 l sex | N }
‘ 202/61 165 | Kidney | 70 | 2.75 1.2217 0. 004310
© 34/62 | 335 | Kidney 106 274 1.2206 0. 004847
P 136/62 {298 i Kidney ! 140 i 2.56 1.1978 0. 006508
200/62 | 278 | Kidney : 105 \ 2.74 | 1.2210 0.007113
0 136/62 | 298 | Intestine 193 | 2.63 1.2077 0. 008270
{ 271/62 | 215 | Intestine 105 l 2.57 | 1.2002 0. 005910
- 200/62 | 278 | Intestine i 105 | 2.86 1.2339 0.006155
| 136/62 | 298 | Muscle 159 ' 2.69 ; 1.2152 0.006196
L271/62 1 218 | Muscle | 105 2.86 1.2339 0. 004499
ro100p  297/61 542 | Cerebral Cortex 106 2,67 1.2130 0.008110
- 297/61 | 54% © Basal Ganglion | 61  2.64 1.2091 0. 004822
136/62 | 292 ‘ Pancreas | bh 2.54 | 1.1961 ©0.012000
971/62 | 212 | Heart .16 251 11913 | 0.007021
102/62 ;428  Lung 108 2.66 1.2109 - 0.005221
‘ ‘ . 1
Analysis of variance
Source of variation 1 Degrees of freedom . Sum of squares “Variance‘ F
Between | 13 | 0.1587 | 0.01221 1.8
Within | 1519 | 9.9398 | 0.00654 |
Total | 1532 | 10.0985 | ]
| Autopsy | Age Number of i | = arctan # | Variance
' number and Organ | samples " (radian) | Sx%/(N 1)
: | sex [ ; N l \
I o e B Lo
202/61 | 165 | Kidney ‘ 73 . 2.53 | 1.1951 I 0.012803
34/62 338  Kidney 86 2.86 1.2340 i 0.011458
136/62 | 295 | Kidney 83 274  1.2206  0.01222
200/62 275 | Kidney : 105 F2.70 1.2126 ~ 0.011227
136/62 | 294 °  Intestine ! 140 | 2.68 1.2131 i 0.006965
271/62 1 218 Intestine 106 ‘ 2.68 1.2143 ‘ 0. 004339
200/62 | 275  Intestine ‘ 105 2.87 1. 2253 P 0.0006442
136/62 208 ; Muscle 105 2.83 | 1. 2306 | 0.006908
271/62 218 | Muscle 3 105 287 1.2360  0.005051
r< 100 297/61 547 | Cerebral Cortex | 106 2.79 | 1. 2968 0. 008121
PP 997/61 549 | Basal Ganglion | 147 261 | 1.2045 0. 008559
©136/62 292 | Pancreas ! 66 2.73 1. 2200 0.012417
271/62 212 ¢ Heart i 108 2.82 1.2303 0. 009440
102/62 . 42% | Lung ‘ 121 | 2.47 1. 1867 0. 008987
Analysis of variance
Source of variation \ Degrees of freedom ’ Sum of squares 1Variancel F
Between | 13 1 0.2954 ‘ 0.02272 2.65¢
Within | 1441 } 12. 4048 0.00861
| 1454 | 12.7002 [ |

Total
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TasLE I-Db.
Number of P \ Confidence | 7 i -
Class samples of class | interval for # of class | Variance
N ‘ at 959, level | |

72100 1533 5 2.66 1! 2.62—2.69 \ 1.2107 ’ 0. 006592

r<100u 1455 N 2.71 : 2.67—2.75 | 1.2175 \ 0. 008735
Analysis of variance ~
Source of variation ‘ Degrees of freedom | Sum of squares i Variance ‘ F B

Between | 1 | 0.050 | 0.0350 4.58%

Within ‘ 2986 | 92.8337 0.0076

ri~7;_, is uniform throughout the series, or that r,, r,, ..., r; make an arithmetical

series. The corresponding intervals of n, n;—n,_,, increase rapidly, if r; approaches
to r. Accordingly, in order to treat the values of n statistically and to correlate
the deviation of n to the errors of arterial radius, some transformation is required to
make the interval of n,—n, , nearly uniform. Arctangent transformation was found
to be the most effective for this purpose, and it could be confirmed that tan—! Ny,
tan "y, . . . .. , tan~'n; approximately made an arithmetical series. The distribu-
tion of tan~'n or X of the same sample group as in Iig. 5 is demonstrated in Fig.
6. Asymmetry of the distribution of = is almost entirely eliminated and it is
now possible to treat the values of X as forming a normal distribution around the
mean Z, to apply necessary statistical treatments and to determine # correspond-
ing to T as the mean of n.

In Table I, the values of % of several normal arterial systems are presented.
It is demonstrated that the values of # are nearly the same in all examined
arterial systems without any appreciable difference according to organs. Analysis
of variance reveals, however, that between class deviations of # are too large to
be attributed to within class deviations of n. This indicates that the value of #
may be different according to examined arterial samples. It is most probably due
to some differences in the condition under which resin is infused. The values of
7 further exhibit some difference according to regions in reference to arterial
radius, and the region <100 has slightly, but statistically significantly, higher
values of #. An elevation of # of this range in the region »<100x does not
cause a remarkable difference in the final results of blood pressure drop, which will
be later calculated by our method. Accordingly, the difference between the two
regions is neglected and the value of # is fixed to 2.7 throughout the whole range
of arteries and throughout all the examined organs or arterial systems.

In the determination of n, we experienced that in some instances a branch did
not reduce its radius even after a subbranch is divided. The majority of such
cases was caused by divisions of too small subbranches. The minimum radius of
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a subbranch which will perceptibly influence the radius of the original branch can
be calculated as follows. If an arterial branch of » in radius divides into two
unequal subbranches of r; and r,, respectively, the relation among them is
determined by 727=»27+7,27 if n s 2.7. We assume that r, is smaller than r,
and 1is equal to ar. Our purpose is to determine the minimum value of « In order
that r, is perceptibly smaller than r. If we regard the minimum perceptible
reduction of radius to be 59, the value of a can be determined from a2?7>1-
(0.95)27.  The result, a>0.47, indicates that a subbranch must have a radius
larger than 479, of the original branch, in order that the reduction of the radius
of the original branch is confirmed. At the division of a subbranch smaller than
that, the determination of n has little meaning, because it is perfectly obscured by
the error in the determination of arterial radius. In the present investigation,
arterial divisions with subbranches smaller than 509, of the original branch in
radius were not included in the determination of n. In the remaining small
number of cases, reduction of arterial radius was not noticed even after the division
of a large subbranch over 509, of the original branch in radius. In such cases »
was determined including the next subdivision where reduction of radius was
noticed. The procedure is demonstrated in Fig. 7.

Fig. 7. When an arterial branch of r, in radius does not perceptibly reduce its radius
even after the division of a subbranch of r; in radius (r;>7/2), the value of n at this
division is determined including the next division where », diminishes its value to », and r,.
The equation to solve is r"==r"+r,/"+ry", instead of ri*=ry"+r"
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As only # is used in the subsequent part of the report, # is written as n for
the sake of simplicity.

From the relation @=gr", the number of arterial branches of » in radius is
given by ,/Q=/(r,/r)", @, and 7, being the blood flow of the organ and the radius
of arterial trunk and ¢ and » those of the branches, respectively. The sum of
cross section area 4 of arterial lumen at the radius » is determined by A4 =nr?.
(QQ)=rr 2.

With the determination of », it is now possible to calculate the value of ¢
in Q=qr" by giving the value of blood flow of an organ to @ and the radius of the
trunk of organ artery to ». The radius of arterial trunk can naturally be determin-
ed on the arterial cast. However, as a catheter must be inserted into the trunk
for resin infusion, the estimation of the radius is often difficult on account of the
deformity due to the manipulation. Besides, acrylic resin of very high viscosity
must be used for perfect formation of arterial cast of the trunk, so that
simultaneous infusion of small arteries is seriously affected. In the present investi-
gation, the value was substituted by the result of the following histometrical
determination. Histological slides of exact cross sections of arterial trunks were
magnified, projected and depicted. Internal elastic membrane was accurately
delineated and measured by attaching thin cotton thread on the depictions. The
obtained values were divided by 27 and reduced to the original dimension in the
slides by calculation. Because paraffin sections were used for the determination,
the obtained values were adjusted by a coefficient to remove them of the effect of
shrinkage which accompanied the preparation of histological slides. The value of
the coefficient was estimated to be 1.15, on the basis of our own investigations
with arterial trunks. As two different principles are introduced for the determina-
tion of arterial radius, a comparative study is required about their results.
The problem will be discussed later in the last section of this report systematically.
In this place it is only pointed out, that the two methods give nearly identical
results, so far as arterial trunks are concerned.

In Table II, the mean values for the radius of arterial trunks are presented
together with their confidence intervals. The values for cerebral arteries are
given for a hypothetical arterial trunk which will be made by the union of two
internal carotid and two vertebral arteries and can be calculated by r27=X727,
in which r represents the radius of each of the four main cercbral arteries. Tn the
heart r, was determined with the three main branches of coronary artery in the
same way. For superior mesenteric and coeliac arteries the blood flow was
calculated from the blood flow of the liver by assuming that it is proportional to
727 of each artery. When arterial radius i1s expressed in s, and @ in ml/sec., ¢ in
@)=qr? 7 represents blood flow in ml/sec. of an arterial branch of 1;¢in radius. In
actual arterial systems there are of course no such small branches, but we can
nevertheless define the blood flow of these hypothetical small arteries as specific
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Tasre 1.
. |
Organ or artery %Number of ‘| Mean radius | Blood flow [ q
i samples % ry () | ml/sec. i 10-Y ml/sec,

Brain s ‘ 2872+ 162 4.0 | 6.4 (5.6-7.5)
Heart | 2 1873 | 3.8 | 5.5

Kidney 23| 2m2ek131 8.3 | 44 (4150
A. mesenterica superior | 16 ‘ 30614205 l 10.8 \ 4.2 (3.5—5.0)
A, coeliaca 17 ‘ 3235160 | 12.5 P 4.2 (3.74.8)

i
i

|

In the last column of the table, confidence intervals of ¢ in reference to the
errors of r; are given in parentheses.

blood flow and use the values i our calculation of blood pressure gradient. In
Table 11, the values of ¢ are given calculated from @Q=gr*7, together with their
confidence intervals in reference to possible errors in the determination of the
mean arterial radius. The result means that, strictly speaking, ¢ 13 an organ
specific constant, but it is rather surprising that the values of ¢ of the examined
organs are nearly equal in spite of different anatomical aspects of arteries
according to organs. This indicates, that arterial branches of equal radii have
practically equal mean blood flow, irrespective of organ difference.

TRANSFORMATION OF HAGEN-POISEUILLE’S FORMULA

In advance of the transformation of Hagen-Poiseuille’s formula, a brief notice
is necessary on the so-called “anomalous viscosity” of blood. The blood is not a
homogeneous fluid but contains erythrocytes. It was demonstrated by Dix and
Scott Blair?, that for fluid containing corpuscular element the resistance to the
flow in narrow tubes was lower than was required by Hagen-Poiseuille’s formula.
Haynes® applied a correction to viscosity coefficient of the blood and observed
satisfactory agreement of the theoretical calculation to experimental observations.
The correction 1s:

/ a \2
Y//:,-rj/{\l,}. };j ,

N

in which %’ is the apparent viscosity coefficient in a narrow tube, 7 is the real
viscosity coefficient of the blood, r is the radius of the tube, and 7" is the mean
radius of erythrocytes, which is estimated to be 3u. The correction is not
necessarily applied to viscosity coefficient, and it does not influence the result at
all, what term in Hagen-Poiseuille’s formula is adjusted. In the present
investigation the length of arterial branches was adjusted instead of viscosity
coefficient by:

o /\1 RS s

vy /

3

in which [ is the anatomical length of arterial branches determined by measurement
In em, and !’ is the effective branch length.
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Now, 1t is possible to transform Hagen-Poiseuille’s formula. The classical
formula expressed in the form:

871Q

dp = Tt

in which 4p is pressure difference between the both ends of the tube in dyne/cm?,
7 is the viscosity coefficient of the fluid in gm/em. sec., I is the length of the tube
in cm, @ is the flow in ml/sec. and 7 is the radius of the tube, is trans-
formed on account of the relation @=¢r" to:

87 X ‘,
dp === g - (2)

T

If the length is expressed in x, 4p in mm Hg, time in second, and if the viscosity
coefficient of the blood is 0.035 gm/em. sec. and # is 2.7, the formula (2) will be:

ll
sp=K-q- -y (3)

l’:l/((1+ 3 )2.

K is a common constant for all arterial systems and has the value:

K =8 x0.035 X 1012/3.1416 X 980 X 13.6 x 1071 = 6.686 x 107.

and

Specific blood flow ¢ is an organ specific constant and has a value in the order of
10~® ml/sec. ~ The last term ['/r'® is determined by anatomical properties of

100 200 300 400 500 600 700 800 900 {000 TI(M)

20

Blood
Presasure
Drop
(mmMHg)

Fig. 8. Blood pressure drop calculated on arbitrarily selected routes of arterial casts
of mesenteric artery.



Intravascular Blood Pressure Gradient 181

arterial branches and can be given by actual measurements. Thus, formula (3)
indicates that the blood pressure difference between the both ends of an unbranch-
ing arterial stretch is expressed by the product of an organ unspecific constant,
an organ specific constant and a quantity determined by the anatomical property
of arterial branches. The ratio I'/r:® can be successively determined from the
trunk to the arterioles of any arterial system by macroscopical and microscopical
observation and measurement on the cast by way of any arbitrarily selected route.
The total blood pressure difference is then given by Sdp=4P=K.¢-¥ , 5. if
Xdp is designated as 4P. In Fig. 8, examples obtained by this procedure from
a mesenteric artery are demonstrated. The method is in this way adequate for
hemodynamical analysis of individual routes of blood flow, but it is stil in-
convenient for theoretical consideration, because 7 Is a discontinuous variable.
Some devices are required to construct a model of arteries, in which r can be
treated as a continuous variable.
CONSTRUCTION OF ARTERIAL MODEL FOR THEORETICAL
TREATMENTS OF INTRAVASCULAR BLOOD PRESSURE

The transformed Hagen-Poiseuille’s formula indicated that the influence
of anatomical properties of arteries on blood flow could be summarized in the
ratio I'/r13. This suggests the importance of more detailed information about
the relation of arterial radius to the effective branch length. An arterial branch
maintains approximately its original radius until large subbranches are divided
from it. But arterial branches are not strictly geometrical structures, and 1t 1s
necessary to set a certain range of errors in the determination of their radii. In
the present study the range of errors was taken as 5%, For example, an arterial
branch of 2004 in radius was regarded to maintain its original radius, so far as the
measurement gave values from 190x to 2104, Branches with irregular bulging and
stricture were excluded from the investigation. It was further noticed that some
arterial branches were slightly constricted just at their exits from larger
branches and acquired constant size in distances nearly equal to their diameters.
In such cases, the radius was determined on the stretch where they attained a
stationary state. When in relatively rare instances arterial branches were
extremely short, they did not usually attain a stationary state, and it was some-
times difficult to decide whether they can be regarded to be branches with definite
length. 1In the present study, arterial branches shorter than their diameters were
excluded from the measurement. Under the above conditions the radius and
the length of randomly selected arterial branches were determined from the region
of arterial trunk to arterioles. Because the length of a branch must be evaluated
differently according to differently selected routes of blood stream, when only
small subbranches divided in the course of the stretch, every possible route was
taken into consideration. The procedure is diagrammatically explained in Fig.
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Fig. 9. We assume that an arterial branch has a radius » at @ and »+£0.05r along the
stretch from a to &. Divisions of small subbranches do not cause noticeable reduction
in radius. The length of the branch must have accordingly three different values [;, I, and
I3 corresponding to three different possibilities in the selection of the route for blood

stream. In the present investigation, [,, [, and I, are all registered as the length of
the branch.

The results of measurements were plotted on a logarithmic scale taking
the abscissa for the radius and the ordinate for the effective branch length. For
a given 7, the values of I’ are highly scattered, the range of deviations being
usually over 20 times. The result corresponds to the confirmed observation,
that the length of arterial branches of equal radii can be extremely divergent.
However, when a large number of measurements was plotted on the diagram, a
distinet positive correlation was confirmable between » and I’. The relation
appeared to be a linear regression on a logarithmic scale. On this assumption,
the regression equations were determined and the relation of 7 and I’ could be
expressed by a general formula I'=Ar', b and ¢ being constants.

Table 111 shows the results of the determination on several arterial systems.
The values of ¢ are about 0.8 in renal artery, about 1.0 in femoral and mesenteric
arteries and about 1.2 in cerebral artery. The lower the value of ¢ is, the higher is
the ratio of the effective length of arterioles to that of larger branches and the
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Fig. 10. The radius r and the effective length I’ of arterial branches of renal and
mesenteric arteries are demonstrated on the logarithmic scale. In spite of highly
scattered individual values linear regression is confirmed between the two variables when
a large number of measurements is plotted. Note the difference in the slope of regression
equations of the two arterial systems. In mesenteric artery, the region r>450p is not
included in the determination of the regression equation. The region is characterized by
abundant networks of arterial anastomosis, so that arterial branches are too short to be
treated in a common sample group together with the region r=450u. Accordingly,
when an exact treatment is required, the total range of mesenteric artery must be divided
into the two parts with different regression equations. However, because blood pressure
drop in the region r>450 is in any way only insignificant, the equation of the region r<
450p is extrapolated to larger arterial branches. In the arterial systems examined in the
present study, mesenteric artery was the only exception, in which anatomical structures
made the separation of arterial ranges in reference to radius necessary.
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TasLe III.
| . | |
Organ or l Clase ]‘ Regression Degrees of \‘ Sz2 | Sdzy. Vehri
artery | | equation freedom |
i N |
| 202/61 | ¥=0.8813X +1.1184 | 379 ‘ 72.7038 | 25.3011 | '=13.150.8
Renal 34/62 ¥=0 8544X +1.2816 404 87.7061  31.5274  ['—10.1y0.8
S ery 136/62  ¥—0.8962X +1.1707 | 519 | 155.9319  48.6836  1/—14.8r0
IV 900/62 ¥—0.7661X+1.4601 433 102.7281 | 31.2063 | '=28.8707
Common ' ¥=0.8530X +1.2463 1738 | 419.0699 | 137.8385 | I'=17.6r0%
136/62 | Y=1. 0010X+1.2626; 418 84.1382 | 36.9877 | I'—18.371.00
Mesenteric | 271/62  ¥—=0.9710X+1.1923 = 491 56.4307 | 44.1493 | I'—=15.5r097
artery 200/62 V=1.1259X+0.9739 | 434 90.3920 | 35.3162 | I'— 9.4s112
Common | ¥V=1.0425X +1.1170 1345 930. 9609 | 117.5131 , I'=13.071:04
Femoral 136/62  ¥—0.9917X1.2474 348 145.7975 | 34.8327 | I'—17.6709
e 971/62  Y=1.0552X-+0.9827 426 | 100.7703 | 28.4637 | I'= 9.6r1.95
T Common ¥V=1.0177X+1.1228 717  246.4978 | 63.5263  1'=13.21.01
Pancreas | 136/62 = ¥—0.9068X +1. 2084 | 285 66.2852 | 18.8254 | I'=16.170-50
Ceggi?;:i 297/61 | ¥=1.1596X +0. 8()92 497 758508 45.9948 = T.4rtee
Basal C90T/61 P—12178X £0.6660 447 | 54.8958 | 315951 U— 4.6
ganglion T +U.6b 2 \ . = 4.6r
Heart 971/62  ¥=1.0587X +0.9012 495 %106.0949‘ 97.7184 I'— 7.971.05
Lung | 102/62 | V=1.1601X +0.4520 405 1150.2339? 39.0580 | I'— 2.8¢118

larger is the proportion of small branches in the total arterial length. If the
effective length of arterial branches at r=10u is calculated taking the effective
length at r==1000x as the unit length, it is about 1/40 for 1=0.8 and 1/250 for
t=1.2. The higher weight of arterioles in renal artery in comparison to other
arteries is clearly demonstrated. The arterial pattern defined by I'==/Ar" has a
decisive influence on the type of intravascular blood pressure gradient, which
will be discussed later.

On the basis of the relation I'==hr?, it is now possible to construct an arterial
model adequate for hemodynamical analysis. For the sake of simplicity,
successive dichotomy of arterial branches is postulated. If we take a certain route
of blood stream out of the system, the radii of the branches constituting the route
make a series 7., Tiiq,..... Tem_y, W being the total number of branches
belonging to the route. The relation of the radius of a branch r,,; to that of the
next subbranch 7,.;,, 1s defined by 7,4,.,==08r,+;, and it 1s further assumed that
& has the same value throughout the series. The total effective length of the
route A,” from the branch with r, downward is given by:

Xx, = lx’ =+ l;c+1 e + Z:’z+m-—1> (4)

if L, s et s lyim—y represent the effective branch length, respectively. On
account of the relation I'=/hr?, the formula (4) will be:



Fig. 11.

cuts the models including their tube axes.

respectively.
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Arterial models are presented with the lines of their walls on the plane which

According to ¢>1, i=1 and <1, the wall of
the models with continuous r is concave upwards, straight and convex upwards,
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N =hrl - hrie, - + Wiy
=hri(l + & + 8% + ...... + S0y,
If we assume infinite subdivision of arterial branches,
148 +8% 4+ ...... + §m—1yi

is the sum of a convergent infinite geometrical series, because ¢ and & are positive
and & is smaller than 1. Accordingly, we obtain:

' Txi . (5)

The formula (5) corresponds to Model 1 in Fig. 11.  The actual shape of the model
is a straight tube with circular cross section, which reduces its radius discontinu-
ously at the end of each step. If the tube is cut by a longitudinal plane passing the
tube axis, the wall of the tube is represented by the step-like line in Fig. 11. Tt
1s assumed that blood flow in the tube is constant as long as the radius is constant
and reduces 1ts quantity abruptly at the distal end of each step, so that blood flow
1s always adjusted to ¢gr". Blood pressure drop in the stretch from r, to r,,; of the
tube is:

Zx’ e YRRy
4P, = K-q- o T K-q-hr v = K.q-hr?* (6)
if n+i-4 18 designated as g. As formula (6) is a power function of r, we can
treat it as a continuous function of 7 and express it as:

N h : ‘

The equation (7) corresponds to Model 2 in Fig. 11. The shape of the second
arterial model is now a continuously tapering straight tube, which mscribes
Model 1 and through the wall of which continuous blood leakage takes place, so
that the blood flow in the tube is always equal to ¢r". Blood pressure drop from
7, to 7., In this arterial model 1s:

Crx dk’ B }(, - (rx o1
AP2 :K(] S;\x+1 %,)A—nw = I(q 71?81‘ 50‘;-{-17‘ . dT
wh

A A S G Trirf)

=K-q - hr#- o (1 8%)g(l — &%) (8)
Except in the case of g=1, or n=4 as g=n-+1—4, the ratio ¢(1-8¢)/g(1-8) is not
equal to 1, and 4P +4P, A third arterial model, Model 3, must be therefore

introduced, in which blood pressure drop between two given radii is exactly equal
to that of Model 1. TIf the equation of the required model is written as A=ZX’,
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the value of Z is determined by 4P,/4P, and we obtain Z=¢(1-8?)/4(1-8¢). The
equation for the required model is:

gh

M ey T )

The equation (9) perfectly satisfies the requirement for the theoretical determi-
nation of intravascular blood pressure gradient. The radius can be treated as a
continuous variable and blood pressure drop between two given radii is exactly
the same to that in the first model with discontinuous r. The blood pressure drop
between r, and 7., of Model 3 is:

Ay dr 5 (]}l €3 —
4Py = K-q- SMM . K-q- T er+l7“’ Lodr
h

— Kq ﬁlj_gg . (Txg . 7-3#15’) — K'(I'}w,\'g — AP] .

If the indefinite integral Ar¢/(1—388)+C 18 designated as -, blood pressure drop
between any two given radii r; and 7, (r,>7,) is given by:

4P = K-g- 1h

se U, =Kq ], (10)

which represents the substitution of ¥ ’74;;1 by +. Further it is possible with

(9) to calculate the mean effective length of an arterial system between two given

radii by:

h
90
A, = i (1 — &%) (r* — ')
When ¢g=0, the equation (9) is indefinite. In this case, the numerator and
denominator of the equation are differentiated in reference to g, respectively, and
the equation can be written as:

__h
v (- log 8)

el

The blood pressure drop from r, to 7, (r,>7,) is given in the case of g=0 by:

K-q-h ,

— — "1
4P = log 5 [log 1”]72 :
The influence of varying ¢ on intravascular blood pressure gradient is demonstrated
in Fig. 12. When ¢ is negative, intravascular blood pressure drop is represented
by a curve convex upwards on a semilogarithmic scale. This means that blood

pressure drop between r=1000x to r==100x is smaller than that between r=100x



188 N. Suwa et al.

Radius (u)
|]O T T T T L l|lolo T T e T T IIIOOO
IOF
20
Blood
P (2)
ressure zcl /
Drop )
(mmHg) 40}
(hy g>o0
50+ 2) g=0
(3) g o

Fig, 12.

and r=10x. There is an acceleration of blood pressure drop on a semilogarithmic
scale in the region of small arteries. The majority of examined arterial systems has
negative g and is characterized by blood pressure gradient of this pattern.
When g 1s positive, the curve is concave upwards, and blood pressure drop from
r=1000y to r==100x 18 larger than that from r=100u to =10, which indicates
deceleration of blood pressure drop in small arteries. When g==0, intravascular
blood pressure drop is represented by a straight line, and blood pressure drop from
r=10004 to r=100p 1s exactly equal to that from r=100u to r=10,. In actual
arterial systems, the latter two conditions can occasionally be attained especially
by arteries for basal ganglia of the brain.

We have not yet examined, how to treat & in the construction of arterial
models. We assume now, that an arterial branch sends off subbranches by infinite
successive dichotomy. We further assume that the relation of the radius of each
of these branches r to those of the next subbranches, r, and r,, are always defined
by r,=8r and r,—=¢r.  Out of the system, we take an extreme route, the radii of
which make a series r, 8r, 8%, ... .. , 0"r (m—oc). The other extreme route has
then the series of radu, », €r, €%,..., €™ (m-—>o0). For the first route, blood
pressure drop between two arbitrarily selected radii », and r, (r,>>7,) is given by:

— g —~ L [pgI
4P, = K-q- [7 é’]yz
and for the second route,

AP, = K-q 1" [T



Intravascular Blood Pressure Gradient 189

Because the blood pressure drop between 7, and r, of all the other possible routes
taken out of the system has some values between 4P, and 4P,, we may
represent the blood pressure drop of the total system for example by:

AP = (4P, + 4P))2

1 /1 1 7 ’

. 1 71 R . . .
if the term 9N sE T [ e, 8 designated as ¢. Our purpose is to examine
the variation of # according to the variations of § and €. Because of the relation
O+ en=1, as r,"+r,=r" the differential d¢/ds is given by:

[

do g [ 8t 5>””1
Sy Loy L

st
' (1—e#)2 :] (1)

If the ratio of the second to the first term in the large parenthesis is designated as
a, we obtain:
/ 76; \‘n—l £s1 / ﬁagf—l_,, - on—8 (1 . 88’)2/

a: |
t\é’/

(L2 | (1882  ens(l — ef)2 °
and the formula (11) is transformed to:

df q o8t

) B R
Corresponding to §>¢, d=¢ and §<¢, the value of a is a>1, a=1 and a<1,
respectively, if ¢ is negative. Accordingly, d#/dd >0, do/d8 =0 and d#/ds <0
corresponding to 6> ¢, 8==¢ and & ¢, respectively. This demonstrates that ¢ takes
its minimum value when 8==¢. The results indicates that out of possible models
for dichotomic arterial systems the minimum blood pressure drop is obtained
by the one which postulates successive subdivision into branches of equal size.
In this case, & is given by §=27"" and when n is 2.7, we obtain 0.7736 for 8.
If successive subdivision into more than two equal branches is assumed, &
18 determined by &=m~1/" m being the number of subbranches at a single
division.  For trichotomy the value is 0.6657, if n is 2.7. Therefore, the absolute
value of 1/(1-8¢) is smaller in trichotomy than in dichotomy, and blood pressure
drop between two given radii is smaller in the case of trichotomy than in
dichotomy. In the actual arterial systems examined, the majority of arterial
divisions is clearly represented by dichotomy, and other modes of division can be
regarded to be more or less exceptional. Only in organs with very short - arterial
branches such as lung and kidney, divisions other than dichotomy are compara-
tively frequently observed.  Accordingly, divisions other than dichotomy are
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neglected in the following sections of this report. In more accurate investigations
of pulmonary and renal arteries, however, some corrections will be necessary.

DETERMINATION OF INTRAVASCULAR BLOOD PRESSURE GRADIENT
BY MEANS OF THE ARTERIAL MODEL

With the determination of &, all necessary wvalues for the calculation of
intravascular blood pressure by formula (10) were obtained. Strictly speaking,
our method 1s only applicable on the organs with known blood flow quantity.
However, as the values of ¢ were not greatly different among the examined organs
of known blood flow, ¢ was fixed to 5.0 109 ml/sec. regardless of organ difference,
so far as the comparison of the influence of anatomical property of arterial
system was concerned, and the application of the method was extended to the
organs of which there was no aval'able information of the blood flow.

In the calculation of 4P with (10), 1t 1s practically not necessary to calculate

the term [’I’]:; When the absolute value for K-q-h/(1-68) 1s determined, it is

plotted on the ordinate of a logarithmic scale at r=1,,, and through this point a
straight line 1s drawn with the slope of tanf=¢. On this line, the ordinate
corresponding to any two arbitrarily selected radii can be determined. The
difference between the two readings gives the value of blood pressure drop between
the two radii with accuracy sufficient for our purpose. An example with the
common regression equation of mesenteric artery is demonstrated in Fig. 13.

100

Ry L LT

tanf=g=-o0.26

L R e e R L K R R -

'0 - od - an -

vororrrvey

e N L L L )

0] I(SO 1000 T

TFig. 13. An example for the determination of blood pressure drop on a logarithmic
scale. As K.q-h/(1-88) is negative, its absolute value is taken on the scale. The ordinate
on the line with the slope g corresponding to a given radius on the abscissa represents
blood pressure drop from 7= to the given radius.
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The results of blood pressure estimation on several arterial systems are
diagrammatically presented in Fig. 14. In every arterial system remarkable blood
pressure drop takes place only in the region of arteries smaller than 100 in radius.
Our results correspond in this respect to the works reported by previousinvestigators.
At the same time, some differences are noticed in the pattern of blood pressure
gradient due to the difference of anatomical property of arteries according to
organs. In renal artery, blood pressure is only insignificantly lowered in the
region of larger arterial branches and falls abruptly in arterioles. On the
contrary, the patterns of cerebral, mesenteric and femoral arteries are characteriz-
ed by relatively distinet pressure drop in arterial branches of larger radius and
by comparatively mild acceleration in blood pressure drop in the arteriolar re-
gion. The difference in the pattern of blood pressure gradient is due to the dif-
ferent values of ¢ in I’==hr". The larger the value of 7 is, the greater is the weight
of larger branches in the total resistance to blood flow in the arterial system.

Another important difference is noticed in the calculated blood pressure
level in the arteriolar region. When blood pressure level is checked at r==10y, it
18 distinctly lower in mesenteric, femoral and cerebral arteries than in renal and
pancreatic arteries. This indicates that the arteriolar region in the latter organ
group is liable to be exposed to higher blood pressure than that in the former, so
far as normal blood flow is sustained and arterial branches are dilated. The major
anatomical factor which causes the difference is the effective length of arterial
systems. In Fig. 15, the effective length of examined arterial systems from r=
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1000/ to r=10 is presented in reference to the blood pressure drop in the same
region. It is clearly demonstrated that the value of A is distinctly higher m the
arterial group with large blood pressure drop. It appears that arterial system is
unable to adjust hemodynamical difference due to different anatomical length of
arteries completely, on account of relatively restricted possibility in the varia-
tion of other anatomical factors which can influence blood flow. The value
of n is almost constant, dichotomy is dominating in every arterial system of large
effective length and the only possible compensation of arterial length by the
difference of 7 seems to be still insufficient to equalize blood pressure level in the
arteriolar region. If the actual blood pressure level in the arteriolar region is
practically the same in every part of the living organism, it is i all probability
only achieved by different muscular tension of arterial walls.

It is further interesting that arterial systems with high estimated blood
pressure level in the region from 1004 to 200, in radius belong to the arterial
group which is associated with high incidence of hypertensive arteriolar lesions.
Except for arteries of basal ganglion of the brain, which divide immediately from
large arteries already as branches smaller than 300. in radius, this group is
characterized by a low value of 7. Such arteries are characterized by only insignifi-
cant blood pressure drop in their larger branches and by extremely steep blood
pressure gradient in their arteriolar region. Although it is impossible to
discuss the mechanism of hypertensive circulatory disturbance in this report, our
results suggest the importance of hemodynamical arterial pattern as one of the
predisposing factors to hypertensive arteriolar injuries.
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ESTIMATION OF ARTERIAL RADIUS IN LIVING ORGANISM

In previous sections of this report, determinations of intravascular blood
pressure gradient were entirely based on the results obtained directly from arterial
casts, without examinations of possible discrepancies between arterial casts and
living arteries. In this section of the report attempts will be made to estimate
the state of living arteries by adjusting the values of blood pressure drop ca'culated
on our arterial model.

Arterial casts represent more or less distended arterial lumina. This is not
only expected from the manipulation of resin infusion under unphysiologically
high pressure, but also concluded from the values of blood pressure drop. Accord-
ing to Landis,® the blood pressure level of arterioles of human skin is about 30
mm Hg. If blood pressure at the terminal part of mesenteric artery is likewise of
the same level and the mean blood pressure of the trunk of mesenteric artery is
90 mm Hg, the pressure drop from the trunk to arterioles must be about 60 mm Hg.
The blood pressure drop from r=-1000. to r=10u of mesenteric artery calculated
on the model is about 256 mm Hg, which is about 429, of the assumed intravital
blood pressure drop. If the artificial dilatation due to resin infusion were
uniform in the whole range of arterial branches and blood flow were sustained at
the same level, blood pressure drop would be inversely proportional to the fourth
power of arterial radius. If we designate the radius of living artery corresponding
to r of arterial cast as r,, the ratio r/r, 1s then determined by (r/r,)*=1/0.42 or
r=1.25r,. The result indicates that artificial dilatation due to resin infusion
would not exceed 25%,.

However, 1t 18 to be examined whether artificial arterial distention is
uniform in the entire arterial length or it is influenced by the size of arterial
branch. The relation was examined by the following procedure.

In an autopsy case with normal kidneys acrylic resin was infused in one of the
kidneys and the organ was fixed in formalin after infused resin had been solidified.
The other kidney was fixed in formalin without resin infusion. Tissue slices were
excised from both kidneys and embedded in paraffin. Solidified resin in arteries
was completely dissolved and removed by organic solvents in the course of paraffin
embedding. Histological examination revealed remarkable dilatation of arteries
of the resin infused kidney and the dilatation was especially pronounced in small
arterial branches. Histological arterial specimens were treated by the histo-
metrical method described by Furuyama.? The essentials of the method were
to reduce the arteries of autopsy cases to the state in which internal elastic
membrane was perfectly stretched and to eliminate the effect of post-mortem
arterial constriction. The radius (in this method the distance from the center of
arterial lumen to the middle point of the media) was defined as anatomical
arterial radius and designated as R. About 20 samples of exact arterial cross
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Fig. 16. The diagram of the method to determine the grade of artificial arterial dilata-
tion due to resin infusion in comparison to the state of arteries with stretched internal
elastic membrane without resin infusion. The principle of the method is to treat the
surface area S of the media of arterial cross sections as an invariable quantity independent

of the state of arterial constriction and to regard arterial branches with equal § as having
equal radii.

sections of various size were selected from each kidney, and the length of the
cross section of internal elastic membrane L and the surface area of the media
S were determined on the magnified depictions of arterial cross sections. From
L and S anatomical radius R and the medial thickness D corresponding to the
state were calculated by:

S
v s 1
and
p_ VIEdS I
2

The symbol for the resin infused organ is indicated by ¢ as in R, and D.. The
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relation of R, and D,, as well as that of Rand D, is a linear regression on a
logarithmic scale, so that the general relation of B, and D, or R and D is given by
general formulae D,=a.R.tc and D=aR’, a, a., b and b, being constants. The
surface area of the media S on the arterial cross section can be regarded to be a
quantity not influenced by the grade of arterial constriction. Arterial samples
from the same organ of the same autopsy case with equal S are accordingly
considered to have had equal radii in the original or hiving state. As S=27RD,
we obtain RD=R.D,, or, substituting D and D, by aR’ and a R}, respectively,
aR"l=q R:c+1 as the equation which defines the relation between anatomical
radius of the resin non-infused artery and the corresponding radius of the resin
mfused artery. For the renal artery of a normal adult autopsy case, we obtained
by the above method:

R. = 2.35 R0

We repeated the examination likewise on other arterial systems and obtained
essentially the same results. This indicates that the measurements of arterial
casts give an about two times larger value as the estimate of arterial radius than
the anatomical radius at R=10., but the difference is reduced to an almost
negligible degree at arterial trunk. The result demonstrates that artificial
arterial dilatation due to resin infusion is not uniform in the total range of arterial
branches, but it is expressed by a power function of the anatomical radius. It
1s not revealed, however, whether the anatomical radius 1s identical with the radius
of living artery or not, but we assume that the relation between the radius of
arterial cast and that of living artery can be likewise expressed in the form of a
power function, r=wury®, in which r and r; are the radius of arterial cast and living
artery, respectively, and v and w are constants. Now we can determine the values
of u and w as follows. ~ We take for example mesenteric artery and assume that
r=r;==3000, at the trunk of mesenteric artery and r=1.25r;, at ry=10p. On
these assumptions the following equations are determined :

3000 = u - 3000*
12,5 ==wu - 10%.

From these equations we obtain ©=1.369 and w=0.9609. The correction equa-
tion under the above conditions is accordingly given by:

r = 1.369 7,0-9609

When the correction equation is applied to our arterial model, the values of 4,
7, ¢, n, g and & are necessarily adjusted, and we obtain a new arterial model with
different constants from those of the model based on the direct measurements of
arterial casts. The calculation of blood pressure drop with the adjusted model is
completely the same as was explained in previous sections of this report. To the
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The figures in the table were calculated on the assumption that blood flow of
mesenteric artery was 10.8 ml/sec. in every arterial model.

coefficient of dilatation at ry=10x, we can give varying values and we obtain a
series of adjusted arterial models. In Fig. 17 and Table IV the values of blood
pressure drop calculated with several adjusted models are presented together with
the values of pertaining constants. When the coefficient of dilatation at 7o—=10p
is set, over 1.75, calculated blood pressure drop from r,=1000u to ry=10p is evi-
dently too large and exceeds 60 mm Hg. In other words, the radius of arterial casts
can not be larger than 1.75 times of that of living artery at 10 in radius. From
the diagram 1t may be concluded, that artificial arterial dilatation due to resin
mfusion is most probably not much different from 509, of living artery at r,=
10p. In the larger arterial branches resin infusion will cause less remarkable
dilatation.

By means of the above procedure, we could adjust our arterial models to the
form which might be regarded to correspond to intravital arterial state more
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closely. However, the results of the correction did not change the conclusions
obtained in previous sections of this report, so far as the comparative study of
intravascular blood pressure gradient of different arterial systems was concerned.

We think it rather appropriate to omit an extensive description of the results
with adjusted arterial models in this report.

SUMMARY

1) Arterial blood flow was expressed as a power function of arterial radius.
In the relation defined by Q@=g¢r", @ was blood flow, ¢ an organ specific constant,
and n had a value about 2.7 regardless of organ difference.

2) On account of the above relation, Hagen-Poiseuille’s formula was
transformed to dp=K.q-I'/r*, in which K was an organ unspecific constant
determined by viscosity coefficient of blood and selected units, I” was the effective
length and r was the radius of an arterial branch. In the transformed formula,
pressure difference between both ends of an unbranching stretch of arteries 4p
was given by the product of organ unspecific and organ specific constants and a
quantity determined by anatomical properties of arteries. By means of
successive determinations of I'/ri= by way of any arbitrarily selected route, the
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3) The relation of the effective branch length [ and the radius » of an arterial
system was expressed by {'==/r’, in which A and ¢ were organ specific constants.

A higher value of 7 indicated a higher proportion of large arterial branches in the
total arterial length.

total blood pressure drop could be determined by Ydp=K-¢-%

4) Assuming successive dichotomy of arterial branches, an arterial model
was constructed with radius as a continuous variable. Blood pressure drop between
any two given radii could be estimated by the calculation on the model by:
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5) Some organ differences in the pattern of blood pressure gradient and
mtravascular blood pressure values were confirmed and were discussed in
reference to different anatomical properties of arterial systems. Renal artery was
characterized by pronounced acceleration of blood pressure drop in the arteriolar
region and by only insignificant pressure drop in its large branches. On the
contrary, considerable blood pressure drop took place in large arterial branches
of mesenteric, femoral and cerebral arteries in contrast to comparatively mild
pressure drop in the arteriolar region. The estimated blood pressure level in the
arteriolar region was correlated to the effective length of arterial systems. It
was found to be higher in the arterial group with short effective arterial length.
It was suggested that arterial systems with high susceptibility to hypertensive
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arteriolar injuries belonged to arteries with high bood pressure level in the region
of r=100u to r=—=200.

6) Artificial arterial dilatation due to resin infusion could be defined by
a power function of arterial radius. The function could be used as the correction
equation of the radius of arterial casts, and the radius of living arteries was
estimated on the basis of blood pressure estimation with corrected arterial
models.
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